941 resultados para Structural steel workers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to provide information on the behaviour of steel prestressing wires under likely conditions that could be expected during a fire or impact loads. Four loadings were investigated: a) the influence of strain rate – from 10–3 to 600 s–1 – at room temperature, b) the influence of temperature – from 24 to 600 °C – at low strain rate, c) the influence of the joint effect of strain rate and temperature, and d) damage after three plausible fire scenarios. At room temperature it was found that using “static” values is a safe option. At high temperatures our results are in agreement with design codes. Regarding the joint effect of temperature and strain rate, mechanical properties decrease with increasing temperature, although for a given temperature, yield stress and tensile strength increase with strain rate. The data provided can be used profitably to model the mechanical behaviour of steel wires under different scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high lattice mismatch between III-nitride binaries (InN, GaN and AlN) remains a key problem to grow high quality III-nitride heterostructures. Recent interest has been focused on the growth of high-quality InAlN layers, with approximately 18% of indium incorporation, in-plane lattice-matched (LM) to GaN. While a lot of work has been done by metal-organic vapour phase epitaxy (MOVPE) by Carlin and co-workers, its growth by molecular beam epitaxy (MBE) is still in infancy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames based on the replacement of infill panels by K-bracing with vertical shear link. The performance of this technique is evaluated through experimental tests. A simplified numerical model for structural damage evaluation is also formulated according to the notions and principles of continuum damage mechanics. The proposed model is calibrated with the experimental results. The experimental results have shown an excellent energy dissipation capacity with the proposed technique. Likewise, the numerical predictions with the proposed model are in good agreement with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apple fruits, cv. Granny Smith, were subjected to mechanical impact and compression loads utilizing a steel rod with a spherical tip 19 mm diameter, 50.6 g mass. Energies applied were low enough to produce enzymatic reaction: 0.0120 J for impact, and 0.0199 J for compression. Bruised material was cut and examined with a transmission electron microscope. In both compression and impact, bruises showed a central region located in the flesh parenchyma, at a distance that approximately equalled the indentor tip radius. The parenchyma cells of this region were more altered than cells from the epidermis and hypodermis. Tissues under compression presented numerous deformed parenchyma cells with broken tonoplasts and tissue degradation as predicted by several investigators. The impacted cells supported different kinds of stresses than compressed cells, resulting in the formation of intensive vesiculation, either in the vacuole or in the middle lamella region between cell walls of adjacent cells. A large proportion of parenchyma cells completely split or had initiated splitting at the middle lamella. Bruising may develop with or without cell rupture. Therefore, cell wall rupture is not essential for the development of a bruise, at least the smallest one, as predicted previously

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prestressed structures are susceptible to relaxation losses which are of significant importance in structural design. After being manufactured, prestressing wires are coiled to make their storage and transportation easier. The possible deleterious effects of this operation on the stress relaxation behavior of prestressing steel wires are usually neglected, though it has been noticed by manufacturers and contractors that when relaxation tests are carried out after a long-time storage, on occasions relaxation losses are higher than those measured a short time after manufacturing. The influence of coiling on the relaxation losses is checked by means of experimental work and confirmed with a simple analytical model. The results show that some factors like initial residual stresses, excessively long-time storage or storage at high temperatures,can trigger or accentuate this damage. However, it is also shown that if the requirements of standards are fulfilled (minimum coiling diameters) these effects can be neglected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work a constitutive model is developed which permits the simulation of the low cycle fatigue behaviour in steel framed structures. In the elaboration of this model, the concepts of the mechanics of continuum medium are applied on lumped dissipative models. In this type of formulation an explicit coupling between the damage and the structural mechanical behaviour is employed, allowing the possibility of considering as a whole different coupled phenomena. A damage index is defined in order to model elastoplasticity coupled with damage and fatigue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente trabajo trata de elementos reforzados con barras de armadura y Fibras Metálicas Recicladas (FMR). El objetivo principal es mejorar el comportamiento a fisuración de elementos sometidos a flexión pura y a flexión compuesta, aumentando en consecuencia las prestaciones en servicio de aquellas estructuras con requerimientos estrictos con respecto al control de fisuración. Entre éstas últimas se encuentran las estructuras integrales, es decir aquellas estructuras sin juntas (puentes o edificios), sometidas a cargas gravitatorias y deformaciones impuestas en los elementos horizontales debidas a retracción, fluencia y temperatura. Las FMR son obtenidas a partir de los neumáticos fuera de uso, y puesto que el procedimiento de reciclado se centra en el caucho en vez que en el acero, su forma es aleatoria y con longitud variable. A pesar de que la eficacia del fibrorefuerzo mediante FMR ha sido demostrada en investigaciones anteriores, la innovación que representa este trabajo consiste en proponer la acción combinada de barras convencionales y FMR en la mejora del comportamiento a fisuración. El objetivo es por tanto mejorar la sostenibilidad del proyecto de la estructura en HA al utilizar materiales reciclados por un lado, y aumentando por el otro la durabilidad. En primer lugar, se presenta el estado del arte con respecto a la fisuración en elementos de HA, que sucesivamente se amplía a elementos reforzados con barras y fibras. Asimismo, se resume el método simplificado para el análisis de columnas de estructuras sin juntas ya propuesto por Pérez et al., con particular énfasis en aquellos aspectos que son incompatibles con la acción de las fibras a nivel seccional. A continuación, se presenta un modelo para describir la deformabilidad seccional y la fisuración en elementos en HA, que luego se amplía a aquellos elementos reforzados con barras y fibras, teniendo en cuenta también los efectos debidos a la retracción (tension stiffening negativo). El modelo es luego empleado para ampliar el método simplificado para el análisis de columnas. La aportación consiste por tanto en contar con una metodología amplia de análisis para este tipo de elementos. Seguidamente, se presenta la campaña experimental preliminar que ha involucrado vigas a escala reducida sometidas a flexión simple, con el objetivo de validar la eficiencia y la usabilidad en el hormigón de las FMR de dos diferentes tipos, y su comportamiento con respecto a fibras de acero comerciales. Se describe a continuación la campaña principal, consistente en ensayos sobre ocho vigas en flexión simple a escala 1:1 (variando contenido en FRM, Ø/s,eff y recubrimiento) y doce columnas a flexión compuesta (variando contenido en FMR, Ø/s,eff y nivel de fuerza axil). Los resultados obtenidos en la campaña principal son presentados y comentados, resaltando las mejoras obtenidas en el comportamiento a fisuración de las vigas y columnas, y la rigidez estructural de las columnas. Estos resultados se comparan con las predicciones del modelo propuesto. Los principales parámetros estudiados para describir la fisuración y el comportamiento seccional de las vigas son: la separación entre fisuras, el alargamiento medio de las armaduras y la abertura de fisura, mientras que en los ensayos de las columnas se ha contrastado las leyes momento/curvatura, la tensión en las barras de armadura y la abertura de fisura en el empotramiento en la base. La comparación muestra un buen acuerdo entre las predicciones y los resultados experimentales. Asimismo, se nota la mejora en el comportamiento a fisuración debido a la incorporación de FMR en aquellos elementos con cuantías de armadura bajas en flexión simple, en elementos con axiles bajos y para el control de la fisuración en elementos con grandes recubrimientos, siendo por tanto resultados de inmediato impacto en la práctica ingenieril (diseño de losas, tanques, estructuras integrales, etc.). VIIIComo punto final, se presentan aplicaciones de las FMR en estructuras reales. Se discuten dos casos de elementos sometidos a flexión pura, en particular una viga simplemente apoyada y un tanque para el tratamiento de agua. En ambos casos la adicción de FMR al hormigón lleva a mejoras en el comportamiento a fisuración. Luego, utilizando el método simplificado para el análisis en servicio de columnas de estructuras sin juntas, se calcula la máxima longitud admisible en casos típicos de puentes y edificación. En particular, se demuestra que las limitaciones de la práctica ingenieril actual (sobre todo en edificación) pueden ser aumentadas considerando el comportamiento real de las columnas en HA. Finalmente, los mismos casos son modificados para considerar el uso de MFR, y se presentan las mejoras tanto en la máxima longitud admisible como en la abertura de fisura para una longitud y deformación impuesta. This work deals with elements reinforced with both rebars and Recycled Steel Fibres (RSFs). Its main objective is to improve cracking behaviour of elements subjected to pure bending and bending and axial force, resulting in better serviceability conditions for these structures demanding keen crack width control. Among these structures a particularly interesting type are the so-called integral structures, i.e. long jointless structures (bridges and buildings) subjected to gravitational loads and imposed deformations due to shrinkage, creep and temperature. RSFs are obtained from End of Life Tyres, and due to the recycling process that is focused on the rubber rather than on the steel they come out crooked and with variable length. Although the effectiveness of RSFs had already been proven by previous research, the innovation of this work consists in the proposing the combined action of conventional rebars and RSFs to improve cracking behaviour. Therefore, the objective is to improve the sustainability of RC structures by, on the one hand, using recycled materials, and on the other improving their durability. A state of the art on cracking in RC elements is firstly drawn. It is then expanded to elements reinforced with both rebars and fibres (R/FRC elements). Finally, the simplified method for analysis of columns of long jointless structures already proposed by Pérez et al. is resumed, with a special focus on the points that conflict when taking into account the action of fibres. Afterwards, a model to describe sectional deformability and cracking of R/FRC elements is presented, taking also into account the effect of shrinkage (negative tension stiffening). The model is then used to implement the simplified method for columns. The novelty represented by this is that a comprehensive methodology to analyse this type of elements is presented. A preliminary experimental campaign consisting in small beams subjected to pure bending is described, with the objective of validating the effectiveness and usability in concrete of RSFs of two different types, and their behaviour when compared with commercial steel fibres. With the results and lessons learnt from this campaign in mind, the main experimental campaign is then described, consisting in cracking tests of eight unscaled beams in pure bending (varying RSF content, Ø/s,eff and concrete cover) and twelve columns subjected to imposed displacement and axial force (varying RSF content, Ø/s,eff and squashing load ratio). The results obtained from the main campaign are presented and discussed, with particular focus on the improvement in cracking behaviour for the beams and columns, and structural stiffness for the columns. They are then compared with the proposed model. The main parameters studied to describe cracking and sectional behaviours of the beam tests are crack spacing, mean steel strain and crack width, while for the column tests these were moment/curvature, stress in rebars and crack with at column embedment. The comparison showed satisfactory agreement between experimental results and model predictions. Moreover, it is pointed out the improvement in cracking behaviour due to the addition of RSF for elements with low reinforcement ratios, elements with low squashing load ratios and for crack width control of elements with large concrete covers, thus representing results with a immediate impact in engineering practice (slab design, tanks, integral structures, etc.). Applications of RSF to actual structures are finally presented. Two cases of elements in pure bending are presented, namely a simple supported beam and a water treatment tank. In both cases the addition of RSF to concrete leads to improvements in cracking behaviour. Then, using the simplified model for the serviceability analysis of columns of jointless structures, the maximum achievable jointless length of typical cases of a bridge and building is obtained. In XIIparticular, it is shown how the limitations of current engineering practice (this is especially the case of buildings) can be increased by considering the actual behaviour of RC supports. Then, the same cases are modified considering the use of RSF, and the improvements both in maximum achievable length and in crack width for a given length and imposed strain at the deck/first floor are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steel is, together with concrete, the most widely used material in civil engineering works. Not only its high strength, but also its ductility is of special interest, since it allows for more energy to be stored before failure. A better understanding of the material behaviour before failure may lead to better structural safety strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few years, polyolefin fiber reinforced self-compacting concrete has shown high performance in both fresh and hardened state. Its fracture behavior for small deformations could be enhanced with a small amount of steel-hooked fibers, obtaining a hybrid fiber-reinforced concrete well suited for structural use. Four types of conventional fiber-reinforced concrete with steel and polyolefin fibers were produced on the basis of the same self-compacting concrete also manufactured as reference. These concrete mixtures were manufactured separately with the same fiber contents being subsequently used for two more hybrid mixtures. Fracture properties, in addition to fresh and mechanical properties, were assessed. The research showed both synergies (with the two types of fibers working together in the fracture processes) and an improvement of the orientation and distribution of the fibers on the fracture surface

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article summarizes research on the application of a conductive cement paste as an anode in the now classical technique of electrochemical extraction of chlorides applied to a concrete structural element by spraying the paste on the surface of a concrete structural element, a pillar. Sprayed conductive cement paste, by adding graphite powder, is particularly useful to treat sizable vertical surfaces such are structural supports. Outcomes indicate that this kind of anode not only provides electrochemical chloride removal with similar efficiency, but also is able to retain moisture even without the use of a continuous dampening system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the “Variation Guggenheim 3: Mirador de la palmera” project, situated in Daya Vieja (Alicante-Spain). This structure is inspired by the Guggenheim museum of New York and is designed to protect a land-mark palm-tree from wind loads. This six – trunk palm tree was declared monument by the Valencian government in 2012. The structure that now protect it appears to fly around de palm tree creating a helicoidally skywalk made of steel, while retrofitting the lateral trunks of the tree to protect them from collapse. An 18 m. long straight beam starts on the top of this helix, and stretches towards a lookout point that offers a view of the whole village and its surroundings. The reduction of the visual impact of the structure on the tree was a major aim for the project design. The structural elements are as slender as possible to avoid the visual obstruction of tree. They are painted white, while the walkway steel corrugated plate is painted green in order to highlight its neat shape among the blur created by the apparent mess of bars of the supporting structure. The two main piles of this pedestrian bridge were designed in steel and geometrically resemble trees. A Ground Penetrating Radar analysis was performed to detect the palm root location and to decide the best foundation system. Slender cast in-situ steel-concrete micropiles along with a concrete pile-cap, raised some centimeters above the ground level, were used to reduce the damage to the roots. The projected pile-cap is a slender, continuous, circular ring; which geometry resembles a concrete bench. This structure has been a finalist in the Architecture Awards for the 2010-2014 best construction projects, held by the Diputación de Alicante.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are two main objectives behind the EC proposal on banking structural reform: the financial stability objective and the economic efficiency objective. If it is implemented, the reform should reinforce the stability and economic efficiency of household retail activities through lower contagion, better resolvability in the event of failure, more harmonised supervisory practices across the EU and more resilient household demand for retail loans. However, it could also trigger counterproductive effects that could partly undermine the expected benefits. These potential negative effects are not appropriately assessed in the impact study of the proposal published in January 2014 and will require further consideration in the coming months. In particular, the stability of household retail finance could be strengthened by placing more emphasis on bankruptcy risks of retail banks; the transfer of existing systemic activities towards less regulated and supervised markets and reputational risk. A better analysis of the borrowing costs for households (impacted by the potential decreasing diversification of the funding base of banks and scarcer liquidity) and implementation costs could help regulators to achieve the objective of efficient household activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the economic crisis with resulting high unemployment, EU economies face vacancies across the skill spectrum. At the low end there is a structural need when it comes to seasonal work. The Seasonal Workers Directive was launched at the same time as the Inter-Corporate Transferees (ICTs) Directive in 2010 – as part of the Commission’s 2005 Policy Plan on Legal Migration – and initially appeared to be more troublesome, with the stigma of ‘migrants stealing local jobs’ haunting it. However, without the provisions for intra-EU mobility that have plagued the ICTs Directive, the Seasonal Workers Directive became less problematic despite the fact that seasonal workers are more numerous than intra-corporate transferees. This Policy Brief looks at how negotiating parties ensured a focus not only on the needs of the European labour market, but also saw an opportunity to bring added value to seasonal workers’ rights, through equal treatment to EU nationals. It assesses the final outcome of three and a half years of intra-EU negotiation, looking at the rights gained for seasonal migrants, the level of harmonization achieved, and the future of migration policy with the strategic guidelines for the area of freedom, security and justice in mind.