957 resultados para String Sampler


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations in different types of genomes have been found to be responsible for a large degree of physical diversity such as appearance and susceptibility to disease. Identification of genomic variations is difficult and can be facilitated through computational analysis of DNA sequences. Newly available technologies are able to sequence billions of DNA base pairs relatively quickly. These sequences can be used to identify variations within their specific genome but must be mapped to a reference sequence first. In order to align these sequences to a reference sequence, we require mapping algorithms that make use of approximate string matching and string indexing methods. To date, few mapping algorithms have been tailored to handle the massive amounts of output generated by newly available sequencing technologies. In otrder to handle this large amount of data, we modified the popular mapping software BWA to run in parallel using OpenMPI. Parallel BWA matches the efficiency of multithreaded BWA functions while providing efficient parallelism for BWA functions that do not currently support multithreading. Parallel BWA shows significant wall time speedup in comparison to multithreaded BWA on high-performance computing clusters, and will thus facilitate the analysis of genome sequencing data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black and white photograph, 23 cm x 18 cm, of Julia Cleveland Woodruff wearing a sequined dress and a string of pearls. The photo was taken by Dudley Hoyt of New York. This is a head and shoulders photograph.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black and white photograph, 17 cm x 13 ½, of Margaret Julia Woodruff Band in a seated position wearing a lace dress and a string of pearls. The photo was taken by Dudley Hoyt of New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set of forms which was held together by a string. The title page is brittle and crumbling. Each page is dated and signed either by the Colonel or Lieutenant Colonel A.A.G. [Assistand Adjutant General] Niagara.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse est consacrée à la complexité basée sur le paradigme des preuves interactives. Les classes ainsi définies ont toutes en commun qu’un ou plusieurs prouveurs, infiniment puissants, tentent de convaincre un vérificateur, de puissance bornée, de l’appartenance d’un mot à un langage. Nous abordons ici le modèle classique, où les participants sont des machines de Turing, et le modèle quantique, où ceux-ci sont des circuits quantiques. La revue de littérature que comprend cette thèse s’adresse à un lecteur déjà familier avec la complexité et l’informatique quantique. Cette thèse présente comme résultat la caractérisation de la classe NP par une classe de preuves interactives quantiques de taille logarithmique. Les différentes classes sont présentées dans un ordre permettant d’aborder aussi facilement que possible les classes interactives. Le premier chapitre est consacré aux classes de base de la complexité ; celles-ci seront utiles pour situer les classes subséquemment présentées. Les chapitres deux et trois présentent respectivement les classes à un et à plusieurs prouveurs. La présentation du résultat ci-haut mentionné est l’objet du chapitre quatre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La version intégrale de ce mémoire est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l'Université de Montréal (www.bib.umontreal.ca/MU).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La version intégrale de ce mémoire est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l’Université de Montréal (http://www.bib.umontreal.ca/MU).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Étant donné leur facilité d’application, ces méthodes sont largement répandues dans plusieurs communautés scientifiques et bien certainement en statistique, particulièrement en analyse bayésienne. Depuis l’apparition de la première méthode MCMC en 1953, le nombre de ces algorithmes a considérablement augmenté et ce sujet continue d’être une aire de recherche active. Un nouvel algorithme MCMC avec ajustement directionnel a été récemment développé par Bédard et al. (IJSS, 9 :2008) et certaines de ses propriétés restent partiellement méconnues. L’objectif de ce mémoire est de tenter d’établir l’impact d’un paramètre clé de cette méthode sur la performance globale de l’approche. Un second objectif est de comparer cet algorithme à d’autres méthodes MCMC plus versatiles afin de juger de sa performance de façon relative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La version intégrale de ce mémoire est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l’Université de Montréal (http://www.bib.umontreal.ca/MU)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Réalisé au sein de l'IRCAM, en cotutelle avec Philippe Leroux. La version intégrale de cette thèse est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l’Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La version intégrale de ce mémoire [ou de cette thèse] est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l’Université de Montréal (www.bib.umontreal.ca/MU)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les méthodes de Monte Carlo par chaînes de Markov (MCCM) sont des méthodes servant à échantillonner à partir de distributions de probabilité. Ces techniques se basent sur le parcours de chaînes de Markov ayant pour lois stationnaires les distributions à échantillonner. Étant donné leur facilité d’application, elles constituent une des approches les plus utilisées dans la communauté statistique, et tout particulièrement en analyse bayésienne. Ce sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Depuis l’apparition de la première méthode MCCM en 1953 (la méthode de Metropolis, voir [10]), l’intérêt pour ces méthodes, ainsi que l’éventail d’algorithmes disponibles ne cessent de s’accroître d’une année à l’autre. Bien que l’algorithme Metropolis-Hastings (voir [8]) puisse être considéré comme l’un des algorithmes de Monte Carlo par chaînes de Markov les plus généraux, il est aussi l’un des plus simples à comprendre et à expliquer, ce qui en fait un algorithme idéal pour débuter. Il a été sujet de développement par plusieurs chercheurs. L’algorithme Metropolis à essais multiples (MTM), introduit dans la littérature statistique par [9], est considéré comme un développement intéressant dans ce domaine, mais malheureusement son implémentation est très coûteuse (en termes de temps). Récemment, un nouvel algorithme a été développé par [1]. Il s’agit de l’algorithme Metropolis à essais multiples revisité (MTM revisité), qui définit la méthode MTM standard mentionnée précédemment dans le cadre de l’algorithme Metropolis-Hastings sur un espace étendu. L’objectif de ce travail est, en premier lieu, de présenter les méthodes MCCM, et par la suite d’étudier et d’analyser les algorithmes Metropolis-Hastings ainsi que le MTM standard afin de permettre aux lecteurs une meilleure compréhension de l’implémentation de ces méthodes. Un deuxième objectif est d’étudier les perspectives ainsi que les inconvénients de l’algorithme MTM revisité afin de voir s’il répond aux attentes de la communauté statistique. Enfin, nous tentons de combattre le problème de sédentarité de l’algorithme MTM revisité, ce qui donne lieu à un tout nouvel algorithme. Ce nouvel algorithme performe bien lorsque le nombre de candidats générés à chaque itérations est petit, mais sa performance se dégrade à mesure que ce nombre de candidats croît.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.