Preuves interactives quantiques


Autoria(s): Blier, Hugue
Contribuinte(s)

Tapp, Alain

Data(s)

19/03/2010

31/12/1969

19/03/2010

04/02/2010

01/07/2009

Resumo

Cette thèse est consacrée à la complexité basée sur le paradigme des preuves interactives. Les classes ainsi définies ont toutes en commun qu’un ou plusieurs prouveurs, infiniment puissants, tentent de convaincre un vérificateur, de puissance bornée, de l’appartenance d’un mot à un langage. Nous abordons ici le modèle classique, où les participants sont des machines de Turing, et le modèle quantique, où ceux-ci sont des circuits quantiques. La revue de littérature que comprend cette thèse s’adresse à un lecteur déjà familier avec la complexité et l’informatique quantique. Cette thèse présente comme résultat la caractérisation de la classe NP par une classe de preuves interactives quantiques de taille logarithmique. Les différentes classes sont présentées dans un ordre permettant d’aborder aussi facilement que possible les classes interactives. Le premier chapitre est consacré aux classes de base de la complexité ; celles-ci seront utiles pour situer les classes subséquemment présentées. Les chapitres deux et trois présentent respectivement les classes à un et à plusieurs prouveurs. La présentation du résultat ci-haut mentionné est l’objet du chapitre quatre.

This thesis is devoted to complexity theory based on the interactive proof paradigm. All classes defined in this way involve one or many infinitely powerful provers attempting to convince a verifier of limited power that a string belongs to a certain language. We will consider the classical model, in which the various participants are Turing machines, as well as the quantum model, in which they are quantum circuits. The literature review included in this thesis assume that the reader is familiar with the basics of complexity theory and quantum computing. This thesis presents the original result that the class NP can be characterized by a class of quantum interactive proofs of logarithmic size. The various classes are presented in an order that facilitates the treatment of interactive classes. The first chapter is devoted to the basic complexity classes; these will be useful points of comparison for classes presented subsequently. Chapters two and three respectively present classes with one and many provers. The presentation of the result mentioned above is the object of chapter four.

Identificador

http://hdl.handle.net/1866/3567

Idioma(s)

fr

Palavras-Chave #preuves interactives #Arthur-Merlin #complexité #quantique #caractérisation #interactive proofs #Arthur-Merlin #complexity #quantum #characterization #Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation