958 resultados para Specific cutting energy
Resumo:
Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.
Resumo:
The current energy market requires urgent revision for the introduction of renewable, less-polluting and inexpensive energy sources. Biohydrogen (bioH2) is considered to be one of the most appropriate options for this model shift, being easily produced through the anaerobic fermentation of carbohydrate-containing biomass. Ideally, the feedstock should be low-cost, widely available and convertible into a product of interest. Microalgae are considered to possess the referred properties, being also highly valued for their capability to assimilate CO2 [1]. The microalga Spirogyra sp. is able to accumulate high concentrations of intracellular starch, a preferential carbon source for some bioH2 producing bacteria such as Clostridium butyricum [2]. In the present work, Spirogyra biomass was submitted to acid hydrolysis to degrade polymeric components and increase the biomass fermentability. Initial tests of bioH2 production in 120 mL reactors with C. butyricum yielded a maximum volumetric productivity of 141 mL H2/L.h and a H2 production yield of 3.78 mol H2/mol consumed sugars. Subsequently, a sequential batch reactor (SBR) was used for the continuous H2 production from Spirogyra hydrolysate. After 3 consecutive batches, the fermentation achieved a maximum volumetric productivity of 324 mL H2/L.h, higher than most results obtained in similar production systems [3] and a potential H2 production yield of 10.4 L H2/L hydrolysate per day. The H2 yield achieved in the SBR was 2.59 mol H2/mol, a value that is comparable to those attained with several thermophilic microorganisms [3], [4]. In the present work, a detailed energy consumption of the microalgae value-chain is presented and compared with previous results from the literature. The specific energy requirements were determined and the functional unit considered was gH2 and MJH2. It was possible to identify the process stages responsible for the highest energy consumption during bioH2 production from Spirogyra biomass for further optimisation.
Resumo:
This paper addresses the construction and structuring of a technological niche – i.e. a protected space where promising but still underperforming technologies are stabilized and articulated with societal needs – and discusses the processes that influence niche development and may enable niche breakout. In theoretical terms the paper is grounded on the multi-level approach to sustainability transitions, and particularly on the niche literature. But it also attempts to address the limitations of this literature in what concerns the spatial dimension of niche development. It is argued that technological niches can transcend the narrow territorial boundaries to which they are often confined, and encompass communities and actions that span several spatial levels, without losing some territorial embeddedness. It is further proposed that these features shape the niche trajectory and, therefore, need to be explicitly considered by the niche theoretical framework. To address this problem the paper builds on and extends the socio-cognitive perspective to technology development, introducing a further dimension – space – which broadens the concept of technological niche and permits to better capture the complexity of niche behaviour. This extended framework is applied to the case of an emerging renewable energy technology – wave energy - which exhibits a particularly slow and non-linear development trajectory. The empirical analysis starts by examining how an “overall niche space” in wave energy was spatially constructed over time. Then it investigates in greater detail the niche development processes that took place in Portugal, a country that was among the pioneers in the field, and whose actors have been, from very early stages, engaged in the activities conducted at various spatial levels. Through this combined analysis, the paper seeks to understand whether and how niche development is shaped by processes taking place at different spatial levels. More specifically it investigates the interplay between territorial and relational elements in niche development, and how these different dynamics influence the performance of the niche processes and impact on the overall niche trajectory. The results confirm the niche multi-spatial dynamics, showing that it is shaped by the interplay between a niche relational space constructed by actors’ actions and interactions on/across levels, and the territorial effects introduced by these actors’ embeddedness in particular geographical and institutional settings. They contribute to a more precise understanding of the processes that can accelerate or slow down the trajectory of a technological niche. In addition, the results shed some light into the niche activities conducted in/originating from a specific territorial setting - Portugal - offering some insights into the behaviour of key actors and its implications for the positioning of the country in the emerging field, which can be relevant for the formulation of strategies and policies for this area.
Resumo:
Marine Renewable Energy Conversion systems comprise wave energy and tidal stream converters as well as offshore-wind turbines for electrical generation. These technologies are currently at different stages of development but are mostly at the pre-commercial stage and require research to be undertaken at a series of scales along the path to commercialization. However each of these technologies also needs specific research infrastructures in order to conduct this research. The aim of the MARINET initiative is to coordinate research and development at all scales (small models through to prototype scales, from laboratories through to open sea tests) and to allow access for researchers and developers to infrastructures which are not available universally in Europe, including test facilities for components such as power take-off systems, grid integration, moorings and environmental monitoring so as to ensure a focusing of activities in this area. The initiative offers researchers and developers access to 45 research facilities as well as to the associated network of expertise at all scales in Offshore Marine Renewable Energy technology research and development. The aim of this paper is to present this MARINET initiative that was started in 2011, bringing together a network of 29 partners spread across twelve countries. Details of the MARINET Transnational Access (TA) program are presented, for which over 260 applications were received throughout the 5 official calls for proposals. In particular, statistics on applications and completed projects are presented which provide an overview of the global development progress of the different offshore renewable energy conversion technologies at a European level. It also provides a good overview of the current research activity, as well as evidence of the requirement for specialised research facilities, in this burgeoning field.
Resumo:
The aim of this master’s thesis was to map the management accounting processes and reporting of an internal service unit. The research was conducted in energy services in a forest industry company. Research questions and the results of the study are highly specific for the case unit although some generalizable features of management accounting in internal service units under shared services were searched. The research was carried out as a qualitative action research and a single case study. Internal benchmarking was used to find best practices from other units and to get a comprehensive understanding of the financial processes of the case company. Empirical data for the study was collected with participant observation, interviews of experts and by exploring internal company documents. A literature review was conducted to outline the subject and to support the study. Although the management accounting processes of the case unit were found to be on a good level, some improvement ideas were presented. Results of the research show that the needs of the customers are in the key role in the processes of an internal service unit. Management accounting and reporting need to support the company strategy and management decision-making. To evaluate the performance of the service unit both financial and non-financial measures are needed.
Resumo:
Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.
Resumo:
Starting from the relationship between urban planning and mobility management, TeMA has gradually expanded the view of the covered topics, always remaining in the groove of rigorous scientific in-depth analysis. During the last two years a particular attention has been paid on the Smart Cities theme and on the different meanings that come with it. The last section of the journal is formed by the Review Pages. They have different aims: to inform on the problems, trends and evolutionary processes; to investigate on the paths by highlighting the advanced relationships among apparently distant disciplinary fields; to explore the interaction’s areas, experiences and potential applications; to underline interactions, disciplinary developments but also, if present, defeats and setbacks. Inside the journal the Review Pages have the task of stimulating as much as possible the circulation of ideas and the discovery of new points of view. For this reason the section is founded on a series of basic’s references, required for the identification of new and more advanced interactions. These references are the research, the planning acts, the actions and the applications, analysed and investigated both for their ability to give a systematic response to questions concerning the urban and territorial planning, and for their attention to aspects such as the environmental sustainability and the innovation in the practices. For this purpose the Review Pages are formed by five sections (Web Resources; Books; Laws; Urban Practices; News and Events), each of which examines a specific aspect of the broader information storage of interest for TeMA.
Resumo:
Part 7: Cyber-Physical Systems
Resumo:
BACKGROUND:Tackling inequalities in overweight, obesity and related determinants has become a top priority for the European research and policy agendas. Although it has been established that such inequalities accumulate from early childhood onward, they have not been studied extensively in children. The current article discusses the results of an explorative analysis for the identification of inequalities in behaviours and their determinants between groups with high and low socio-economic status. METHODS: This study is part of the Epode for the Promotion of Health Equity (EPHE) evaluation study, the overall aim of which is to assess the impact and sustainability of EPODE methodology to diminish inequalities in childhood obesity and overweight. Seven community-based programmes from different European countries (Belgium, Bulgaria, France, Greece, Portugal, Romania, The Netherlands) participate in the EPHE study. In each of the communities, children aged 6-8 years participated, resulting in a total sample of 1266 children and their families. A parental self-administrated questionnaire was disseminated in order to assess the socio-economic status of the household, selected energy balance-related behaviours (1. fruit and vegetable consumption; 2. soft drink/ fruit juices and water consumption; 3. screen time and 4. sleep duration) of the children and associated family environmental determinants. The Mann-Whitney U test and Pearson's chi-square test were used to test differences between the low and high education groups. The country-specific median was chosen as the cut-off point to determine the educational level, given the different average educational level in every country. RESULTS: Children with mothers of relatively high educational level consumed fruits and vegetables more frequently than their peers of low socio-economic status. The latter group of children had a higher intake of fruit juices and/or soft drinks and had higher screen time. Parental rules and home availability were consistently different between the two socio-economic groups in our study in all countries. However we did not find a common pattern for all behaviours and the variability across the countries was large. CONCLUSIONS: Our findings are indicative of socio-economic inequalities in our samples, although the variability across the countries was large. The effectiveness of interventions aimed at chancing parental rules and behaviour on health inequalities should be studied.
Resumo:
Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios.
Resumo:
The wave energy industry is entering a new phase of pre-commercial and commercial deployments of full-scale devices, so better understanding of seaway variability is critical to the successful operation of devices. The response of Wave Energy Converters to incident waves govern their operational performance and for many devices, this is highly dependent on spectral shape due to their resonant properties. Various methods of wave measurement are presented, along with analysis techniques and empirical models. Resource assessments, device performance predictions and monitoring of operational devices will often be based on summary statistics and assume a standard spectral shape such as Pierson-Moskowitz or JONSWAP. Furthermore, these are typically derived from the closest available wave data, frequently separated from the site on scales in the order of 1km. Therefore, variability of seaways from standard spectral shapes and spatial inconsistency between the measurement point and the device site will cause inaccuracies in the performance assessment. This thesis categorises time and frequency domain analysis techniques that can be used to identify changes in a sea state from record to record. Device specific issues such as dimensional scaling of sea states and power output are discussed along with potential differences that arise in estimated and actual output power of a WEC due to spectral shape variation. This is investigated using measured data from various phases of device development.
Resumo:
The Maasai/Kikuyu agro-pastoral borderlands of Maiella and Enoosupukia, located in the hinterlands of Lake Naivasha’s agro-industrial hub, are particularly notorious in the history of ethnicised violence in the Kenya’s Rift Valley. In October 1993, an organised assault perpetrated by hundreds of Maasai vigilantes, with the assistance of game wardens and administration police, killed more than 20 farmers of Kikuyu descent. Consequently, thousands of migrant farmers were violently evicted from Enoosupukia at the instigation of leading local politicians. Nowadays, however, intercommunity relations are surprisingly peaceful and the cooperative use of natural resources is the rule rather than the exception. There seems to be a form of reorganization. Violence seems to be contained and the local economy has since recovered. This does not mean that there is no conflict, but people seem to have the facility to solve them peacefully. How did formerly violent conflicts develop into peaceful relations? How did competition turn into cooperation, facilitating changing land use? This dissertation explores the value of cross-cutting ties and local institutions in peaceful relationships and the non-violent resolution of conflicts across previously violently contested community boundaries. It mainly relies on ethnographic data collected between 2014 and 2015. The discussion therefore builds on several theoretical approaches in anthropology and the social sciences – that is, violent conflicts, cross-cutting ties and conflicting loyalties, joking relationships, peace and nonviolence, and institutions, in order to understand shared spaces that are experiencing fairly rapid social and economic changes, and characterised by conflict and coexistence. In the researched communities, cross-cutting ties and the split allegiances associated with them result from intermarriages, land transactions, trade, and friendship. By institutions, I refer to local peace committees, an attempt to standardise an aspect of customary law, and Nyumba Kumi, a strategy of anchoring community policing at the household level. In 2010, the state “implanted” these grassroots-level institutions and conferred on them the rights to handle specific conflicts and to prevent crime. I argue that the studied groups utilise diverse networks of relationships as adaptive responses to landlessness, poverty, and socio-political dynamics at the local level. Material and non-material exchanges and transfers accompany these social and economic ties and networks. In addition to being instrumental in nurturing a cohesive social fabric, I argue that such alliances could be thought of as strategies of appropriation of resources in the frontiers – areas that are considered to have immense agricultural potential and to be conducive to economic enterprise. Consequently, these areas are continuously changed and shaped through immigration, population growth, and agricultural intensification. However, cross-cutting ties and intergroup alliances may not necessarily prevent the occurrence or escalation of conflicts. Nevertheless, disputes and conflicts, which form part of the social order in the studied area, create the opportunities for locally contextualised systems of peace and non-violence that inculcate the values of cooperation, coexistence, and restraint from violence. Although the neo-traditional institutions (local peace committees and Nyumba Kumi) face massive complexities and lack the capacity to handle serious conflicts, their application of informal constraints in dispute resolution provides room for some optimism. Notably, the formation of ties and alliances between the studied groups, and the use of local norms and values to resolve disputes, are not new phenomena – they are reminiscent of historical patterns. Their persistence, particularly in the context of Kenya, indicates a form of historical continuity, which remains rather “undisturbed” despite the prevalence of ethnicised political economies. Indeed, the formation of alliances, which are driven by mutual pursuit of commodities (livestock, rental land, and agricultural produce), markets, and diversification, tends to override other identities. While the major thrust of social science literature in East Africa has focused on the search for root causes of violence, very little has been said about the conditions and practices of cooperation and non-violent conflict resolution. In addition, situations where prior violence turned into peaceful interaction have attracted little attention, though the analysis of such transitional phases holds the promise of contributing to applicable knowledge on conflict resolution. This study is part of a larger multidisciplinary project, “Resilience in East African Landscapes” (REAL), which is a Marie Curie Actions Innovative Training Networks (ITN) project. The principal focus of this multidisciplinary project is to study past, present, and future thresholds and sustainable trajectories in human-landscape interactions in East Africa over the last millennia. While other individual projects focus on long-term ecosystem dynamics and societal interactions, my project examines human-landscape interactions in the present and the very recent past (i.e. the period in which events and processes were witnessed or can still be recalled by today’s population). The transition from conflict to coexistence and from competition to cooperative use of previously violently contested land resources is understood here as enhancing adaptation in the face of social-political, economic, environmental, and climatic changes. This dissertation is therefore a contribution to new modes of resilience in human-landscape interactions after a collapse situation.
Resumo:
This document addresses the direct and indirect use of energy in European organic greenhouse horticulture (OGH) with the aim of reviewing available means for making it more environmental friendly and identifying knowledge gaps that should be addressed to attain this aim. The first observation is that there is no common regulation for energy use in OGH, which is not unexpected, since the need for climatisation is not uniformly distributed in the EU (and outside). Accordingly, the EU directive on organic agriculture does not set limitations on the use of energy, but rather promotes the responsible use of energy and of natural resources. The restrictions and rules of most private standards are slightly more stringent. Some standards have specific restrictions on the amount and sources of energy and/or on the seasonal use of energy for heating. Some standards also address processes that may affect (in)direct energy use, such as cultivation methods, mulching, lighting and growing media or substrates. However, most private standards have no or little restrictions or regulations on energy use. Accordingly, it should not surprise that very little quantitative information is available about energy use in OGH. In the present document we have filled the gaps with data with estimates drawn on energy use in conventional greenhouses. With respect to ongoing research, whereas many of the present research results about energy use and saving in conventional greenhouses are relevant (and also applied) in OGH, little research is devoted to address the energy use that is peculiar to OGH, particularly energy use for humidity control. In short, there are still a lot of knowledge gaps to improve quality and to lower energy use in organic greenhouses. The purpose of this document is a summary of present relevant knowledge about energy use and energy saving and of the perspective for improvement. In particular, the goal is to make an overview on the methods and technologies which can be used to reduce the energy use in OGH. We start from the assumption that methods and technologies that are used for reducing direct and indirect energy in conventional greenhouses can also be applied in organic greenhouses. Research on reducing energy use in conventional greenhouses is also more widely available because the area of conventional greenhouse horticulture is much larger than the area of OGH. When implementing these methods and techniques we should take into account the specific characteristics of organic agriculture like soil-based cultivation, use of organic fertilizers and the limited use of crop protection products. This document is organised as follows: first we report the results of a survey about energy use and relevant standards in the countries participating to the COST action (chapter 1); then we review the energy use for climatisation: heating (chapter 2) and humidity (chapter 3). In chapter 4 we review the available design and management means that would either reduce energy use and/or increase energy use efficiency by increasing productivity of OGH. In chapter 5 we present a short summary of existing information on indirect energy use, that is the energy required to manufacture production means (greenhouse structure and cover, fertilisers, equipment etc.) and for crop protection, particularly steaming, and briefly discuss possible savings. Finally (chapter 6) we review briefly the potential for application of renewable energy sources in OGH.
Resumo:
The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.
Resumo:
The main objective of this PhD thesis is to optimize a specific multifunctional maritime structure for harbour protection and energy production, named Overtopping Breakwater for Energy Conversion (OBREC), developed by the team of the University of Campania. This device is provided with a sloping plate followed by a unique reservoir, which is linked with the machine room (where the energy conversion occurs) by means of a pipe passing through the crown wall, provided with a parapet on top of it. Therefore, the potential energy of the overtopping waves, collected inside the reservoir located above the still water level, is then converted by means of low – head turbines. In order to improve the understanding of the wave – structure interactions with OBREC, several methodologies have been used and combined together: i. analysis of recent experimental campaigns on wave overtopping discharges and pressures at the crown wall on small – scale OBREC cross sections, carried out in other laboratories by the team of the University of Campania; ii. new experiments on cross sections similar to the OBREC device, planned and carried out in the hydraulic lab at the University of Bologna in the framework of this PhD work; iii. numerical modelling with a 1 – phase incompressible fluid model IH – 2VOF, developed by the University of Cantabria, and with a 2 – phase incompressible fluid model OpenFOAM, both available from the literature; iv. numerical modelling with a new 2 – phase compressible fluid model developed in the OpenFOAM environment within this PhD work; v. analysis of the data gained from the monitoring of the OBREC prototype installation.