873 resultados para Spatiotemporal shaping
Resumo:
Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system.
Resumo:
Research on top managers’ strategizing behavior has addressed how they shape either the structural context or the interpretations of organization members. I offer a structuration theory framework integrating these two partial explanations and treating strategy shaping as socially dynamic. A qualitative seven-year analysis of top managers in three universities shows a sequential pattern of shaping strategy first in the action and then in the institutional realm, and also a simultaneous pattern of shaping strategy in both realms at once. Both patterns are successful in weakly institutionalized strategy contexts, whereas the simultaneous pattern is more successful in strongly institutionalized strategy contexts.
Resumo:
This paper extends existing understandings of how actors' constructions of ambiguity shape the emergent process of strategic action. We theoretically elaborate the role of rhetoric in exploiting strategic ambiguity, based on analysis of a longitudinal case study of an internationalization strategy within a business school. Our data show that actors use rhetoric to construct three types of strategic ambiguity: protective ambiguity that appeals to common values in order to protect particular interests, invitational ambiguity that appeals to common values in order to invite participation in particular actions, and adaptive ambiguity that enables the temporary adoption of specific values in order to appeal to a particular audience at one point in time. These rhetorical constructions of ambiguity follow a processual pattern that shapes the emergent process of strategic action. Our findings show that (1) the strategic actions that emerge are shaped by the way actors construct and exploit ambiguity, (2) the ambiguity intrinsic to the action is analytically distinct from ambiguity that is constructed and exploited by actors, and (3) ambiguity construction shifts over time to accommodate the emerging pattern of actions.
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.
Resumo:
Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible.
Resumo:
Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.
Resumo:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fibre lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new families of vector solitons with precessing states of polarization for multipulsing and bound-state soliton operations in a carbon nanotube mode-locked fibre laser with anomalous dispersion cavity. © 2013 IEEE.
Resumo:
We propose an all-fiber method for the generation of ultrafast shaped pulse train bursts from a single pulse based on Fourier Series Developments (FDSs). The implementation of the FSD based filter only requires the use of a very simple non apodized Superimposed Fiber Bragg Grating (S-FBG) for the generation of the Shaped Output Pulse Train Burst (SOPTB). In this approach, the shape, the period and the temporal length of the generated SOPTB have no dependency on the input pulse rate.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR CONSULTATION
Resumo:
We provide an overview of our recent work on the shaping and stability of optical continua in the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled using a carefully chosen seed. A particular example of this is the first experimental observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves. © 2012 Elsevier Inc. All rights reserved.
Resumo:
By means of extensive numerical modelling we have demonstrated the possibility of nonlinear pulse shaping in a mode-locked fibre laser using control of the intra-cavity propagation dynamics by adjustment of the normal net dispersion and integrated gain. Beside self-similar mode-locking, the existence of a novel type of pulse shaping regime that produces pulses with a triangular temporal intensity profile and a linear frequency chirp has been observed.