940 resultados para Skew divergence. Segmentation. Clustering. Textural color image
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper introduces the Optimum-Path Forest (OPF) classifier for static video summarization, being its results comparable to the ones obtained by some state-of-the-art video summarization techniques. The experimental section has been conducted using several image descriptors in two public datasets, followed by an analysis of OPF robustness regarding one ad-hoc parameter. Future works are guided to improve OPF effectiveness on each distinct video category.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Huge image collections are becoming available lately. In this scenario, the use of Content-Based Image Retrieval (CBIR) systems has emerged as a promising approach to support image searches. The objective of CBIR systems is to retrieve the most similar images in a collection, given a query image, by taking into account image visual properties such as texture, color, and shape. In these systems, the effectiveness of the retrieval process depends heavily on the accuracy of ranking approaches. Recently, re-ranking approaches have been proposed to improve the effectiveness of CBIR systems by taking into account the relationships among images. The re-ranking approaches consider the relationships among all images in a given dataset. These approaches typically demands a huge amount of computational power, which hampers its use in practical situations. On the other hand, these methods can be massively parallelized. In this paper, we propose to speedup the computation of the RL-Sim algorithm, a recently proposed image re-ranking approach, by using the computational power of Graphics Processing Units (GPU). GPUs are emerging as relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. We address the image re-ranking performance challenges by proposing a parallel solution designed to fit the computational model of GPUs. We conducted an experimental evaluation considering different implementations and devices. Experimental results demonstrate that significant performance gains can be obtained. Our approach achieves speedups of 7x from serial implementation considering the overall algorithm and up to 36x on its core steps.
Resumo:
Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper proposes a method for segmentation of cell nuclei regions in epithelium of prostate glands. This structure provides information to diagnosis and prognosis of prostate cancer. In the initial step, the contrast stretching technique was applied in image in order to improve the contrast between regions of interest and other regions. After, the global thresholding technique was applied and the value of threshold was defined empirically. Finally, the false positive regions were removed using the connected components technique. The performance of the proposed method was compared with the Otsu technique and statistical measures of accuracy were calculated based on reference images (gold standard). The result of the mean value of accuracy of proposed method was 93% ± 0.07.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Long-term clinical evaluation of the color stability and stainability of acrylic resin denture teeth
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Relevance feedback approaches have been established as an important tool for interactive search, enabling users to express their needs. However, in view of the growth of multimedia collections available, the user efforts required by these methods tend to increase as well, demanding approaches for reducing the need of user interactions. In this context, this paper proposes a semi-supervised learning algorithm for relevance feedback to be used in image retrieval tasks. The proposed semi-supervised algorithm aims at using both supervised and unsupervised approaches simultaneously. While a supervised step is performed using the information collected from the user feedback, an unsupervised step exploits the intrinsic dataset structure, which is represented in terms of ranked lists of images. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors and different datasets. The proposed approach was also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of the proposed approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Melipona scutellaris Latreille has great economic and ecological importance, especially because it is a pollinator of native plant species. Despite the importance of this species, there is little information about the conservation status of their populations. The objective of this study was to assess the diversity in populations of M. scutellaris coming from a Semideciduous Forest Fragment and an Atlantic Forest Fragment in the Northeast Brazil, through geometric morphometric analysis of wings in worker bees. In each area, worker bees were collected from 10 colonies, 10 workers per colony. To assess the diversity on the right wings of worker bees, 15 landmarks were plotted and the measures were used in analysis of variance and multivariate analysis, principal component analysis, discriminant analysis and clustering analysis. There were significant differences in the shape of the wing venation patterns between colonies of two sites (Wilk's lambda = 0.000006; p < 0.000001), which is probably due to the geographical distance between places of origin which impedes the gene flow between them. It indicates that inter and intrapopulation morphometric variability exists (p < 0.000001) in M. scutellaris coming from two different biomes, revealing the existence of diversity in these populations, which is necessary for the conservation of this bee species.
Resumo:
This paper compares the effectiveness of the Tsallis entropy over the classic Boltzmann-Gibbs-Shannon entropy for general pattern recognition, and proposes a multi-q approach to improve pattern analysis using entropy. A series of experiments were carried out for the problem of classifying image patterns. Given a dataset of 40 pattern classes, the goal of our image case study is to assess how well the different entropies can be used to determine the class of a newly given image sample. Our experiments show that the Tsallis entropy using the proposed multi-q approach has great advantages over the Boltzmann-Gibbs-Shannon entropy for pattern classification, boosting image recognition rates by a factor of 3. We discuss the reasons behind this success, shedding light on the usefulness of the Tsallis entropy and the multi-q approach. (C) 2012 Elsevier B.V. All rights reserved.