999 resultados para SEMICONDUCTING OXIDE NANOBELTS
Resumo:
Nanoparticles of titania were obtained by the controlled hydrolysis of Ti(i-OC3H7)(4) in the reverse micelles of dodecylamine derived from dodecylamine-isopropanol-water solution (water/oil microemulsion). The mesolamellar phase based on titanium nitride (TiN) was obtained by first decomposing TiN atleast partially using the 1:1 solution of acid mixture (HF and HNO3 in the ratio of 9:1) in water and then templating onto the cationic surfactant namely, cetyltrimethylammaniumbromide (abbreviated as CTAB) at 80 degrees C. The synthesis of mesolamellar phase based on TiN involves the charge matched templating approach following the counter-ion mediated pathway. The samples thus obtained were characterized by small angle x-ray diffraction using Cuk(a) radiation, scanning electron microscopy and transmission electron microscopy, which indicated some satisfactory results. (C) 1999 Acta Metallurgica Inc.
Resumo:
Aqueous solutions of acetates and nitrates of zinc and cobalt have been spray decomposed to study the production of extended solid solutions in the ZnO-CoO system. Examination of the products of a variety of synthesis conditions indicates that up to 70% CoO may be retained in the solid solution in the wurzite phase, even though a comparison of the equilibrium solubility in the phase diagram might be expected to favor the formation of a rock-salt-based solid solution.
Resumo:
Passing a H-2-CH4 mixture over oxide spinels containing two transition elements as in Mg0.8MyMz'Al2O4 (M, M' = Fe, Co or Ni, y + z = 0.2) at 1070 degrees C produces small alloy nanoparticles which enable the formation of carbon nanotubes. Surface area measurements are found to be useful for assessing the yield and quality of the nanotubes. Good-quality single-walled nanotubes (SWNTs) have been obtained in high yields with the FeCo alloy nanoparticles, as evidenced by transmission electron microscope images and surface area measurements. The diameter of the SWNTs is in the 0.8-5 nm range, and the multiwalled nanotubes, found occasionally, possess very few graphite layers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.
Resumo:
Indium-tin oxide films have been deposited by reactive electron beam evaporation of ln+Sn alloy both in neutral and ionized oxygen environments. A low-energy ion source (fabricated in-house) has been used. Films deposited with neutral oxygen exhibited very low optical transmittance (5% at 550 nm). Highly transparent (85%) and low-resistivity (5 X 10(-4) Omega cm) films have been deposited in ionized oxygen at ambient substrate temperature. Optical and electrical properties of the films have been studied as a function of deposition parameters. (C) 2002 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We review our recent contributions to the use of solvothermal methods for the preparation of different oxide and chalcogenide nanoparticles. We have prepared sub 10-nm,gamma-Fe2O3 ZnFe2O4, and CoFe2O4 particles by the decomposition of the corresponding cupferron complexes in the presence of n-octylamine or n-dodecylamine in solvothermal toluene. Similarly, dodecanethiol-capped chalcogenide nanoparticles of CdSe have been prepared by reacting cadmium stearates with H2Se under solvothermal conditions. The H2Se is generated in situ by the reduction of Se by tetralin. Using this latter technique, we have also been able to prepare PbSe and PbI2 in toluene under solvothermal conditions, albeit in bulk (rather than nanocrystalline) form. In the preparation of PbI2, HI is prepared by the in situ reduction of I-2 by tetralin.
Resumo:
Thin films of cobalt oxide have been deposited on various substrates, such as glass, Si(100), SrTiO3(100), and LaAlO3(100), by low pressure metalorganic chemical vapor deposition (MOCVD) using cobalt(IL), acetylacetonate as the precursor. Films obtained in the temperature range 400-600 degreesC were uniform and highly crystalline having Co3O4 phase as revealed by x-ray diffraction. Under similar conditions of growth, highly oriented thin films of cobalt oxide grow on SrTiO3(100) and LaAlO3(100). The microstructure and the surface morphology of cobalt oxide films on glass, Si(100) and single crystalline substrates, SrTiO3(100) and LaAlO3(100) were studied by scanning electron microscopy. Optical properties of the films were studied by uv-visible-near IR spectrophotometry.
Resumo:
In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We have analyzed the stability of various oxides of K and find that K(2)O(2) is the most stable one. The additional stability is traced to the presence of oxygen dimers in K(2)O(2) which interact to form molecular orbitals. Other oxides such as KO(2) and KO(3) which also have dimers/trimers of oxygens are found to be less stable. This is traced to the shorter O-O bonds that one finds in them which gives rise to a significant coulomb repulsion between the electrons on the oxygen atoms making up the dimer/trimer, making them less stable.
Resumo:
Thin films of Ceria, Titania and Ziroonia have been prepared using Ion Assisted Deposition(IAD). The energy of ions was varied between 0 and 1 keV and current densities up to 220 μA/cm were used. It was found that the stress behaviour is dependent on ion species, i.e. Argon or Oxygen, ion energy and current density and substrate temperature apart from the material. While oeria files showed tensile stresses under the influence of argon ion bombardment at ambient temperature, they showed a sharp transition from tensile to compressive stress with increase in substrate temperature. When bombarded with oxygen ions they showed a transition from tensile to compressive stress with increase in energy. The titania films deposited with oxygen ions, on the other hand showed purely tensile stresses. Zirconia films deposited with oxygen ions, however, showed a transition from tensile to compressive stress.
Resumo:
I-V studies indicate a composition dependent switching behavior (Memory or Threshold) in bulk Al20AsxTe80−x glasses, which is determined by the coordination and composition of aluminum. Investigations on temperature and thickness dependence of switching and structural studies on switched samples suggest thermal and electronic mechanisms of switching for the memory and threshold samples, respectively. The present results also show that these samples have a wider composition range of threshold behavior with lower threshold voltages compared to other threshold samples.
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
The present study was undertaken to assess the role of reactive oxygen species (ROS) in rat aortic ring vasoreactivity and integrity by using various peroxovanadate (pV) compounds. All the pV compounds (1 nM-300 mu M) used in the present study exerted concentration-dependent contractions on endothelium intact rat aortic rings. All compounds with an exception of DPV-asparagine (DPV-asn) significantly altered vascular integrity as shown by diminished KCl responses. Phenylephrine (PE)-mediated contractions (3 nM-300 mu M) were unaltered in the presence of these compounds. Acetylcholine (Ach)-mediated relaxation in PE (1 mu M) pre-contracted rings was significantly reduced in presence of diperoxovanadate (DPV), poly (sodium styrene sulfonate-co-maleate)-pV (PSS-CoM-pV) and poly (sodium styrene 4-sulfonate)-pV (PSS-pV). However, no significant change in Ach-mediated responses was observed in the presence of poly (acrylate)-pV (PM-pV) and DPV-asn. DPV-asn was thus chosen to further elucidate mechanism involved in peroxide mediated modulation of vasoreactivity. DPV-asn (30 nM-300 mu M) exerted significantly more stable contractions, that was found to be catalase (100 U/ml) resistant in comparison with H(2)O(2) (30 nM-300 mu M) in endothelium intact aortic rings. These contractile responses were found to be dependent on extracellular Ca(2+) and were significantly inhibited in presence of ROS scavenger N-acetylcysteine (100 mu M). Intracellular calcium chelation by BAPTA-AM (10 mu M) had no significant effect on DPV-asn (30 nM-300 mu M) mediated contraction. Pretreatment of aortic rings by rho-kinase inhibitor Y-27632 (10 mu M) significantly inhibited DPV-asn-mediated vasoconstriction indicating role of voltage-dependent Ca(2+) influx and downstream activation of rho-kinase. The small initial relaxant effect obtained on addition of DPV-asn (30 nM-1 mu M) in PE (1 mu M) pre-contracted endothelium intact rings, was prevented in the presence of guanylate cyclase inhibitor, methylene blue (10 mu M) and/or nitric oxide synthase (NOS) inhibitor, L-NAME (100 mu M) suggesting involvement of nitric oxide and cGMP. DPV-asn, like H(2)O(2), exerted a response of vasoconstriction in normal arteries and vasodilation at low concentrations (30 nM-1 mu M) in PE-pre contracted rings with overlapping mechanisms. These findings suggest usefulness of DPV-asn having low toxicity, in exploring the peroxide-mediated effects on various vascular beds. The present study also convincingly demonstrates role of H(2)O(2) in the modulation of vasoreactivity by using stable peroxide DPV-asn and warrants future studies on peroxide mediated signaling from a newer perspective. (C) 2011 Published by Elsevier Ltd.
Resumo:
Nanocrystalline tin oxide powder was prepared using a solution precipitation technique after adding the surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT). Powders were characterized using X-ray diffraction (XRD), surface area (BET) and transmission electron microscopy (TEM). The gas sensitivity for surfactant added powders increased for liquid petroleum gas (LPG) as well as compressed natural gas (CNG), due to the decreased particle size and the increased surface area. The LPG gas sensitivity increased several times using phosphorus treated surfactant AOT.