885 resultados para Resting Metabolic Rate


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to compare the modulation of heart rate in a group of postmenopausal women to that of a group of young women under resting conditions on the basis of R-R interval variability. Ten healthy postmenopausal women (mean ± SD, 58.3 ± 6.8 years) and 10 healthy young women (mean ± SD, 21.6 ± 0.82 years) were submitted to a control resting electrocardiogram (ECG) in the supine and sitting positions over a period of 6 min. The ECG was obtained from a one-channel heart monitor at the CM5 lead and processed and stored using an analog to digital converter connected to a microcomputer. R-R intervals were calculated on a beat-to-beat basis from the ECG recording in real time using a signal-processing software. Heart rate variability (HRV) was expressed as standard deviation (RMSM) and mean square root (RMSSD). In the supine position, the postmenopausal group showed significantly lower (P<0.05) median values of RMSM (34.9) and RMSSD (22.32) than the young group (RMSM: 62.11 and RMSSD: 49.1). The same occurred in the sitting position (RMSM: 33.0 and RMSSD: 18.9 compared to RMSM: 57.6 and RMSSD: 42.8 for the young group). These results indicate a decrease in parasympathetic modulation in postmenopausal women compared to young women which was possibly due both to the influence of age and hormonal factors. Thus, time domain HRV proved to be a noninvasive and sensitive method for the identification of changes in autonomic modulation of the sinus node in postmenopausal women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms underlying the loss of resting bradycardia with detraining were studied in rats. The relative contribution of autonomic and non-autonomic mechanisms was studied in 26 male Wistar rats (180-220 g) randomly assigned to four groups: sedentary (S, N = 6), trained (T, N = 8), detrained for 1 week (D1, N = 6), and detrained for 2 weeks (D2, N = 6). T, D1 and D2 were treadmill trained 5 days/week for 60 min with a gradual increase towards 50% peak VO2. After the last training session, D1 and D2 were detrained for 1 and 2 weeks, respectively. The effect of the autonomic nervous system in causing training-induced resting bradycardia and in restoring heart rate (HR) to pre-exercise training level (PET) with detraining was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. T rats significantly increased peak VO2 by 15 or 23.5% when compared to PET and S rats, respectively. Detraining reduced peak VO2 in both D1 and D2 rats by 22% compared to T rats, indicating loss of aerobic capacity. Resting HR was significantly lower in T and D1 rats than in S rats (313 ± 6.67 and 321 ± 6.01 vs 342 ± 12.2 bpm) and was associated with a significantly decreased intrinsic HR (368 ± 6.1 and 362 ± 7.3 vs 390 ± 8 bpm). Two weeks of detraining reversed the resting HR near PET (335 ± 6.01 bpm) due to an increased intrinsic HR in D2 rats compared with T and D1 rats (376 ± 8.8 bpm). The present study provides the first evidence of intrinsic HR-mediated loss of resting bradycardia with detraining in rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW) = rib cage (V RC) + abdomen (V AB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05). EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI) V CW (P < 0.05). In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seven male broiler strains (Arbor Acres, Avian Farms, Cobb-500, Hubbard-Peterson, ISA, Naked Neck, and Ross) were compared for their growth rate, feed efficiency, and mortality due to sudden death and ascites. In addition, weekly plasma levels of thyroid hormones [3,3′,5-triiodothyronine (T3) thyroxine (T4), T3: T4 ratio, growth hormone (GH), and insulin-like growth factor-I (IGF-I)] were determined. The highly productive, commercial strains were very similar in their endocrine profiles but differed markedly from the Naked Neck chickens. Naked Neck chickens were characterized by higher plasma T3 and lower T4 levels at similar ages as well as when compared on the same body weight basis. The present findings support the hypothesis that the slightly hypothyroid state of high productive broilers renders them more sensitive to metabolic disorders. Naked Neck chickens also had higher plasma GH levels than those of their age-matched commercial broilers. The coefficient of variation for GH was highest for Naked Neck chickens, which is indicative for an amplified GH burst amplitude. It may be stated that changes in plasma thyroid hormone concentration in indirect response to selection for low feed conversion and fast growth may be causatively linked to susceptibility for metabolic disturbances such as sudden death syndrome and ascites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Of all humans thus far studied, Sherpas are considered by many high-altitude biomedical scientists as most exquisitely adapted for life under continuous hypobaric hypoxia. However, little is known about how the heart is protected in hypoxia. Hypoxia defense mechanisms in the Sherpa heart were explored by in vivo, noninvasive 31P magnetic resonance spectroscopy. Six Sherpas were examined under two experimental conditions [normoxic (21% FiO2) and hypoxic (11% FiO2) and in two adaptational states--the acclimated state (on arrival at low-altitude study sites) and the deacclimating state (4 weeks of ongoing exposure to low altitude). Four lowland subjects were used for comparison. We found that the concentration ratios of phosphocreatine (PCr)/adenosine triphosphate (ATP) were maintained at steady-state normoxic values (0.96, SEM = 0.22) that were about half those found in normoxic lowlanders (1.76, SEM = 0.03) monitored the same way at the same time. These differences in heart energetic status between Sherpas and lowlanders compared under normoxic conditions remained highly significant (P < 0.02) even after 4 weeks of deacclimation at low altitudes. In Sherpas under acute hypoxia, the heart rate increased by 20 beats per min from resting values of about 70 beats per min, and the percent saturation of hemoglobin decreased to about 75%. However, these perturbations did not alter the PCr/ATP concentration ratios, which remained at about 50% of the values expected in healthy lowlanders. Because the creatine phosphokinase reaction functions close to equilibrium, these steady-state PCr/ATP ratios presumably coincided with about 3-fold higher free adenosine diphosphate (ADP) concentrations. Higher ADP concentrations (i.e., lower [PCr]/[ATP] ratios) were interpreted to correlate with the Km values for ADP-requiring kinases of glycolysis and to reflect elevated carbohydrate contributions to heart energy needs. This metabolic organization is postulated as advantageous in hypobaria because the ATP yield per O2 molecule is 25-60% higher with glucose than with free fatty acids (the usual fuels utilized in the human heart in postfasting conditions).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to describe and compare the ventilation behavior during an incremental test utilizing three mathematical models and to compare the feature of ventilation curve fitted by the best mathematical model between aerobically trained (TR) and untrained ( UT) men. Thirty five subjects underwent a treadmill test with 1 km.h(-1) increases every minute until exhaustion. Ventilation averages of 20 seconds were plotted against time and fitted by: bi-segmental regression model (2SRM); three-segmental regression model (3SRM); and growth exponential model (GEM). Residual sum of squares (RSS) and mean square error (MSE) were calculated for each model. The correlations between peak VO2 (VO2PEAK), peak speed (Speed(PEAK)), ventilatory threshold identified by the best model (VT2SRM) and the first derivative calculated for workloads below (moderate intensity) and above (heavy intensity) VT2SRM were calculated. The RSS and MSE for GEM were significantly higher (p < 0.01) than for 2SRM and 3SRM in pooled data and in UT, but no significant difference was observed among the mathematical models in TR. In the pooled data, the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.58; p < 0.01) and Speed(PEAK) (r = -0.46; p < 0.05) while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r = -0.43; p < 0.05). In UT group the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.65; p < 0.05) and Speed(PEAK) (r = -0.61; p < 0.05), while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r= -0.73; p < 0.01), Speed(PEAK) (r = -0.73; p < 0.01) and VO2PEAK (r = -0.61; p < 0.05) in TR group. The ventilation behavior during incremental treadmill test tends to show only one threshold. UT subjects showed a slower ventilation increase during moderate intensities while TR subjects showed a slower ventilation increase during heavy intensities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of a short-term low-or high-carbohydrate (CHO) diet consumed after exercise on sympathetic nervous system activity. Twelve healthy males underwent a progressive incremental test; a control measurement of plasma catecholamines and heart rate variability (HRV); an exercise protocol to reduce endogenous CHO stores; a low-or high-CHO diet (counterbalanced order) consumed for 2 days, beginning immediately after the exercise protocol; and a second resting plasma catecholamine and HRV measurement. The exercise and diet protocols and the second round of measurements were performed again after a 1-week washout period. The mean (+/- SD) values of the standard deviation of R-R intervals were similar between conditions (control, 899.0 +/- 146.1 ms; low-CHO diet, 876.8 +/- 115.8 ms; and high-CHO diet, 878.7 +/- 127.7 ms). The absolute high-and low-frequency (HF and LF, respectively) densities of the HRV power spectrum were also not different between conditions. However, normalized HF and LF (i.e., relative to the total power spectrum) were lower and higher, respectively, in the low-CHO diet than in the control diet (mean +/- SD, 17 +/- 9 normalized units (NU) and 83 +/- 9 NU vs. 27 +/- 11 NU and 73 +/- 17 NU, respectively; p < 0.05). The LF/HF ratio was higher with the low-CHO diet than with the control diet (mean +/- SD, 7.2 +/- 6.2 and 4.2 +/- 3.2, respectively; p < 0.05). The mean values of plasma catecholamines were not different between diets. These results suggest that the autonomic control of the heart rate was modified after a short-term low-CHO diet, but plasma catecholamine levels were not altered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pereira, G, Almeida, AG, Rodacki, ALF, Ugrinowitsch, C, Fowler, NE, Kokubun, E. The influence of resting period length on jumping performance. J Strength Cond Res 22: 1259-1264, 2008-The purpose of this study was to determine a resting interval between countermovement jumps (i.e., volleyball spikes) that allows the maintenance of maximal jumping performance. Ten male volleyball players (1.85 +/- 0.05 m, 77.2 +/- 10.6 kg, 21.6 +/- 5.3 years) performed 6 experimental jumping sessions. In the first and sixth sessions, maximal countermovement jump height was measured, followed by submaximal countermovement jumps to the point of volitional fatigue. The number of countermovement jumps was used as a reference to test the effect of rest period between volleyball spikes. From the second to fifth experimental sessions, 30 maximal volleyball spikes were performed with different resting periods (i.e., 8, 14, 17, and 20 seconds) followed by countermovement jumps. Between the 15th and 30th spikes, the blood lactate concentration and heart rate were measured. Because the performance on the first and sixth sessions was the same, no training effects were noticed. During the 8-second resting interval set, the lactate concentration increased significantly between the 15th and 30th spikes (i.e., from 3.37 +/- 1.16 mmol to 4.94 +/- 1.49 mmol); the number of countermovement jumps decreased significantly after spikes compared to those performed without a previous effort (i.e., from 23 +/- 7 jumps to 17 +/- 9 jumps); and these variables were significantly correlated (r = -0.7). On the other hand, the lactate concentration and number of countermovement jumps were stable across the other resting intervals, without a heart rate steady state. The results indicate that an adequate resting period between spikes allowed participants to achieve a lactate steady state in which the performance was maintained during the exercise. These findings show that resting intervals between 14 and 17 seconds, typical during volleyball matches, are indicated to use in volleyball spike drills due to their capacity to maintain maximal jumping performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drugs known to inhibit the metabolism of cyclosporine are administered concomitantly to those who undergo cardiothoracic transplantation. The aim of this study was to examine in quantitative terms the relationship between cyclosporine oral dose rate and the trough concentration (Css(trough)) at steady state in patients who undergo cardiothoracic transplantation and are administered cyclosporine alone or in combination with drugs known to inhibit its metabolism. Dose and whole blood cyclosporine Css(tough) observations measured using the enzyme-multiplied immunoassay technique (EMIT) (396 observations) or the TDx assay (435 observations) were collected as part of routine blood concentration monitoring from 182 patients who underwent cardiothoracic transplantation. Data were analyzed using a linear mixed-effects modeling approach to examine the effect of metabolic inhibitors on dose-rate-Css(trough) ratio. The mean (and 95% confidence interval) dose-rate-Css(trough) ratio for cyclosporine generated from concentrations measured using EMIT was 94 (82.5-105.5) Lh(-1) for patients administered cyclosporine alone, 66.7 (58.1-75.3) Lh(-1) for patients administered concomitant diltiazem, 47.9 (15.4 -80.4) Lh(-1) for patients administered concomitant itraconazole, 21.7 (14.8-28.5) Lh(-1) for patients administered concomitant ketoconazole, and 14.9 (11.8-18.1) Lh(-1) for patients concomitantly administered diltiazem and ketoconazole. For patients administered concomitant cyclosporine, ketoconazole, and diltiazem, the dosage of cyclosporine, if it is administered alone, should be 20% to achieve the same blood concentrations. This will allow safer drug concentration targeting of cyclosporine after cardiothoracic transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cardiac limb of the baroreflex loop was studied in the saltwater crocodile Crocodylus porosus, The classical pharmacological methodology using phenylephrine and sodium nitroprusside was used to trigger blood pressure changes, and the resulting alterations in heart rate were analysed quantitatively using a logistic function. Interindividual differences in resting heart rates and blood pressures were observed, but all seven animals displayed clear baroreflex responses. Atropine and sotalol greatly attenuated the response. A maximal baroreflex gain of 7.2 beats min(-1) kPa(-1) was found at a mean aortic pressure of 6.1 kPa, indicating the active role of the baroreflex in a wide pressure range encompassing hypotensive and hypertensive states. At the lowest mean aortic pressures (5.0 kPa), the synergistic role of the pulmonary-to-systemic shunt in buffering the blood pressure drop also contributes to blood pressure regulation, Pulse pressure showed a better correlation,vith heart rate and also a higher gain than mean aortic, systolic or diastolic pressures, and this is taken as an indicator of the existence of a differential control element working simultaneously with a linear proportional element.