958 resultados para Receptor 2 Toll-Like
Resumo:
An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL) has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC). Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA)-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40), IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2)- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.
Resumo:
Vaccines which use the strategy of fusing adjuvant murine â-defensin2 (mBD2) to an antigen in order to elicit stronger anti-antigen immune responses are referred to as murine â-defensin2 (mBD2) vaccines. Previous studies have validated the potential of mBD2 vaccines, thus in this study we focus on increasing vaccine efficacy as well as mechanism elucidation. Initially, we demonstrate superior IFN-ã release levels by antigen specific effector T cells when antigen is crosspresented by dendritic cells (DC) which absorbed mBD2 vaccine (mBD2 fused antigen protein) over antigen alone. We move unto an in vivo model and note significant increases in the expansion of antigen specific class I T cells but not class II T cells when receiving mBD2 vaccine over antigen alone. Further, knowing mBD2’s link with CC chemokine receptor 6 (CCR6) and Toll-like receptor 4 (TLR4) we note that this enhanced class I T cell expansion is CCR6 independent but TLR4 dependent. With anti-tumor responses desired, we demonstrate in tumor protection experiments with mice, compelling tumor protection when combining adoptive T cell therapy and mBD2 vaccine immunization. We further note that mBD2 vaccines are not limited by the antigen and characterize a viable strategy for enhancing tumor antigen immunogenicity.
Resumo:
Only limited data are available about the precise mechanism leading to tissue inflammation and damage in patients with hidradenits suppurativa (HS). The central pathogenetic event in HS is the occlusion of the upper parts of the hair follicle leading to a perifollicular lympho-histiocytic inflammation. In early lesions, neutrophilic abscess formation and influx of mainly macrophages, monocytes and dendritic cells predominate. In chronic disease, the infiltrate expand with increased frequencies of B cells and plasma cells. In the inflammatory infiltrates toll like receptor 2 (TLR2) was highly expressed by infiltrating macrophages and dendritic cells indicating that stimulation of inflammatory cells by TLR2 activating microbial products may be important trigger factors in the chronic inflammatory process. Furthermore, the pro inflammatory cytokines IL-12 and IL-23 are abundantly expressed by macrophages infiltrating papillary and reticular dermis of HS skin. Both of these cytokines are believed to be important mediators in autoimmune tissue destruction and its blocking by biologics has been shown to be effective in the treatment of psoriasis. Especially IL-23 has been shown to be involved in the induction of a T helper cell subset producing IL-17, therefore, named Th17, which is distinct from the classical Th1/Th2 subsets. In chronic HS lesions IL-17-producing T helper cells were found to infiltrate the dermis. An overexpression of various other cytokines like IL-1beta, CYCL9 (MIG), IL-10 , IL-11 and BLC has been described in HS lesion whereas IL-20 and IL-22 have been shown to be down regulated. Similar to psoriasis also in HS the antimicrobial peptides beta defensin 2 and psoriasin are highly upregulated. This may at least in part explain the clinical finding that HS patients suffer only rarely from skin infections. Taken together the inflammatory reaction leading to HS are only poorly understood, but they show many similarity with other inflammatory reactions as e.g. in psoriasis.
Resumo:
We reported previously that infection of C3H/HeOuJ (HeOu) mice with the murine intestinal pathogen Citrobacter rodentium caused a selective modulation of hepatic cytochrome P450 (P450) gene expression in the liver that was independent of the Toll-like receptor 4. However, HeOu mice are much more sensitive to the pathogenic effects of C. rodentium infection, and the P450 down-regulation was associated with significant morbidity in the animals. Here, we report that oral infection of C57BL/6 mice with C. rodentium, which produced only mild clinical signs and symptoms, produced very similar effects on hepatic P450 expression in this strain. As in HeOu mice, CYP4A mRNAs and proteins were among the most sensitive to down-regulation, whereas CYP4F18 was induced. CYP2D9 mRNA was also induced 8- to 9-fold in the C57BL/6 mice. The time course of P450 regulation followed that of colonic inflammation and bacterial colonization, peaking at 7 to 10 days after infection and returning to normal at 15 to 24 days as the infection resolved. These changes also correlated with the time course of significant elevations in the serum of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha, as well as of interferon-gamma and IL-2, with serum levels of IL-6 being markedly higher than those of the other cytokines. Intraperitoneal administration of C. rodentium produced a rapid down-regulation of P450 enzymes that was quantitatively and qualitatively different from that of oral infection, although CYP2D9 was induced in both models, suggesting that the effects of oral infection on the liver are not due to bacterial translocation.
Resumo:
X-linked inhibitor of apoptosis protein (XIAP) has been identified as a potent regulator of innate immune responses, and loss-of-function mutations in XIAP cause the development of the X-linked lymphoproliferative syndrome type 2 (XLP-2) in humans. Using gene-targeted mice, we show that loss of XIAP or deletion of its RING domain lead to excessive cell death and IL-1β secretion from dendritic cells triggered by diverse Toll-like receptor stimuli. Aberrant IL-1β secretion is TNF dependent and requires RIP3 but is independent of cIAP1/cIAP2. The observed cell death also requires TNF and RIP3 but proceeds independently of caspase-1/caspase-11 or caspase-8 function. Loss of XIAP results in aberrantly elevated ubiquitylation of RIP1 outside of TNFR complex I. Virally infected Xiap−/− mice present with symptoms reminiscent of XLP-2. Our data show that XIAP controls RIP3-dependent cell death and IL-1β secretion in response to TNF, which might contribute to hyperinflammation in patients with XLP-2.
Resumo:
OBJECTIVES Saliva has been implicated to support oral wound healing, a process that requires a transient inflammatory reaction. However, definitive proof that saliva can provoke an inflammatory response remained elusive. MATERIALS AND METHODS We investigated the ability of freshly harvested and sterile-filtered saliva to cause an inflammatory response of oral fibroblasts and epithelial cells. The expression of cytokines and chemokines was assessed by microarray, RT-PCR, immunoassays, and Luminex technology. The involvement of signaling pathways was determined by Western blot analysis and pharmacologic inhibitors. RESULTS We report that sterile-filtered whole saliva was a potent inducer of IL-6 and IL-8 in fibroblasts from the gingiva, the palate, and the periodontal ligament, but not of oral epithelial cells. This strong inflammatory response requires nuclear factor-kappa B and mitogen-activated protein kinase signaling. The pro-inflammatory capacity is heat stable and has a molecular weight of <40 kDa. Genome-wide microarrays and Luminex technology further revealed that saliva substantially increased expression of other inflammatory genes and various chemokines. To preclude that the observed pro-inflammatory activity is the result of oral bacteria, sterile-filtered parotid saliva, collected under almost aseptic conditions, was used and also increased IL-6 and IL-8 expression in gingiva fibroblasts. The inflammatory response was, furthermore, independent of MYD88, an adapter protein of the Toll-like receptor signaling pathway. CONCLUSIONS We conclude that saliva can provoke a robust inflammatory response in oral fibroblasts involving the classical nuclear factor-kappa B and mitogen-activated protein kinase signaling pathway. CLINICAL RELEVANCE Since fibroblasts but not epithelial cells show a strong inflammatory response, saliva may support the innate immunity of defect sites exposing the oral connective tissue.
Resumo:
Immunotherapy for type I allergies is well established and is regarded to be the most efficient treatment option besides allergen avoidance. As of today, different forms of allergen preparations are used in this regard, as well as different routes of application. Virus-like particles (VLPs) represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances activation of innate as well as adaptive immune responses. CpG motifs represent intensively investigated and potent direct stimulators of plasmacytoid dendritic cells and B cells, while T cell responses are enhanced indirectly through increased antigen presentation and cytokine release. This article will focus on the function of VLPs loaded with DNA rich in nonmethylated CG motifs (CpGs) and the clinical experience gained in the treatment of allergic rhinitis, demonstrating clinical efficacy also if administered without allergens. Several published studies have demonstrated a beneficial impact on allergic symptoms by treatment with CpG-loaded VLPs. Subcutaneous injection of VLPs loaded with CpGs was tested with or without the adjuvant alum in the presence or absence of an allergen. The results encourage further investigation of VLPs and CpG motifs in immunotherapy, either as a stand-alone product or as adjuvants for allergen-specific immunotherapy.
Resumo:
Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1β, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.
Resumo:
MEKK2 is an evolutionarily conserved mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that controls the MAPK and IKK-NF-κB pathways. The MAPK and IKK pathways are intracellular signaling networks that are crucial for the Toll-like receptor (TLR) mediated innate immunity, cellular stress and many other physiological responses. Members of the MAP3K family are central to the activation of these processes. However, the molecular mechanisms underlying stimuli-mediated MAP3K activation remain largely unknown. In this study, we identified a key phosphoserine residue, Ser-519 in MEKK2, and its equivalent site Ser-526 in MEKK3 within their activation loop whose phosphorylation are essential for their optimal activation. Mutation of this regulatory serine to an alanine severely impaired MEKK2 activation and MEKK2 signaling to its downstream targets. To demonstrate that physiological stimuli induce this serine phosphorylation, we generated an antibody that specifically recognizes the phosphorylated serine residue. We found that many, but not all, of the MAPK agonists, including the TLR ligands, growth factors, cytokines and cellular stresses, induced this regulatory serine phosphorylation in MEKK2, suggesting an involvement of MEKK2 in the activation of the MAPK cascade leading to different cellular responses. We further investigated the specific role of MEKK2 in LPS/TLR4 signaling by using MEKK2−/− mice. We found that MEKK2 was selectively required for LPS-induced ERK1/2 activation, but not JNK, p38 or NF-κB activation. We also found that MEKK2 was involved in TLR4 dependent induction of proinflammatory cytokines and LPS-induced septic shock. In conclusion, we identified a key regulatory serine residue in the activation loop of MEKK2 whose phosphorylation is a key sensor of receptor- and cellular stress-mediated signals. We also demonstrated that MEKK2 is crucial for TLR4-mediated innate immunity. ^
Resumo:
Tuberculosis is a major cause of death due to an infection in mankind. BCG vaccine protects against childhood tuberculosis although, it fails to protect against adult tuberculosis. BCG vaccine localizes to immature phagosomes of macrophages, and avoids lysosomal fusion, which decreases peptide antigen production. Peptides are essential for macrophage-mediated priming of CD4 and CD8 T cells respectively through MHC-II and MHC-I pathways. Furthermore, BCG reduces the expression of MHC-II in macrophages of mice after infection, through Toll-like receptor-1/2 (TLR-1/2) mediated signaling. In my first aim, I hypothesized that BCG-induced reduction of MHC-II levels in macrophages can decrease CD4 T cell function, while activation of other surface Toll-like receptors (TLR) can enhance CD4 T cell function. An in vitro antigen presentation model was used where, TLR activated macrophages presented an epitope of Ag85B, a major immunogen of BCG to CD4 T cells, and T cell derived IL-2 was quantitated as a measure of antigen presentation. Macrophages with BCG were poor presenters of Ag85B while, TLR-7/9/5/4 and 1/2 activation led to an enhanced antigen presentation. Furthermore, TLR-7/9 activation was found to down-regulate the degradation of MHC-II through ubiquitin ligase MARCH1, and also stimulate MHC-II expression through activation of AP-1 and CREB transcription elements via p38 and ERK1/2 MAP kinases. I conclude from Aim-I studies that TLR-7/9 ligands can be used as more effective ‘adjuvants’ for BCG vaccine. In Aim-II, I evaluated the poor CD8 T cell function in BCG vaccinated mice thought to be due to a decreased leak of antigens into cytosol from immature phagosomes, which reduces the MHC-I mediated activation of CD8 T cells. I hypothesized that rapamycin co-treatment could boost CD8 T cell function since it was known to sort BCG vaccine into lysosomes increasing peptide generation, and it also enhanced the longevity of CD8 T cells. Since CD8 T cell function is a dynamic event better measurable in vivo, mice were given BCG vaccine with or without rapamycin injections and challenged with virulent Mycobacterium tuberculosis. Organs were analysed for tetramer or surface marker stained CD8 T cells using flow cytometry, and bacterial counts of organisms for evaluation of BCG-induced protection. Co-administration of rapamycin with BCG significantly increased the numbers of CD8 T cells in mice which developed into both short living effector- SLEC type of CD8 T cells, and memory precursor effector-MPEC type of longer-living CD8 T cells. Increased levels of tetramer specific-CD8 T cells correlated with a better protection against tuberculosis in rapamycin-BCG group compared to BCG vaccinated mice. When rapamycin-BCG mice were rested and re-challenged with M.tuberculosis, MPECs underwent stronger recall expansion and protected better against re-infection than mice vaccinated with BCG alone. Since BCG induced immunity wanes with time in humans, we made two novel observations in this study that adjuvant activation of BCG vaccine and rapamycin co-treatment both lead to a stronger and longer vaccine-mediated immunity to tuberculosis.
Resumo:
IL-24 is an unusual member of the IL-10 family, which is considered a Th1 cytokine that exhibits tumor cell cytotoxicity. I describe the purification of this novel cytokine from the supernatant of IL-24 gene transfected human embryonic kidney cells and define the biochemical and functional properties of the soluble, human IL-24 protein. ^ I showed IL-24 non-covalently associates with bovine albumin. Immunoaffinity purification followed by cation exchange chromatography resulted in the significant enrichment of N-glycosylated IL-24. This protein elicited dose-dependent secretion of TNF-α and IL-6 from purified human monocytes and TNF-α secretion from PMA differentiated U937 cells. I showed this same protein was cytotoxic to melanoma tumor cells via the induction of IFN-α. ^ I reported IL-24 associates as at least two disulfide linked, N-glycosylated dimers. Enzymatic removal of N-linked-glycosylation from purified IL-24 partially diminished its cytokine and cytotoxic functions. Disruption of IL-24 dimers via reduction and alkylation of intermolecular disulfide bonds nearly abolished IL-24s cytokine function. ^ I elucidated IL-24 induced TNF-α secretion was pSTAT1, pSTAT3 as well as the class II heterodimeric receptors IL-20R1/IL-22R2 independent. I identified a requirement for the heterodimer of Toll-like Receptors 1 and 2 for IL-24s cytokine function and show a physical interaction between IL-24 and the extracellular domain of TLR-1. ^ Thus, I demonstrated that purified N-glycosylated, soluble, dimeric, human IL-24 exhibits both immunomodulatory and anti-cancer activities and these functions remain associated during purification. IL-24 induced TNF-α secretion required an interaction with the heterodimeric receptor TLR-1/2 and IL-24s cytotoxic affect to melanoma tumor cells was in part due to its induction of IFN-β. ^
Resumo:
The two widely coexpressed isoforms of β-arrestin (termed βarrestin 1 and 2) are highly similar in amino acid sequence. The β-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of β-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the β-arrestins (βarr1-KO and βarr2-KO) or both (βarr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the β2-adrenergic receptor (β2-AR) and the angiotensin II type 1A receptor (AT1A-R). Both βarr1-KO and βarr2-KO cells showed similar impairment in agonist-stimulated β2-AR and AT1A-R desensitization, when compared with their WT control cells, and the βarr1/2-KO cells were even further impaired. Sequestration of the β2-AR in the βarr2-KO cells was compromised significantly (87% reduction), whereas in the βarr1-KO cells it was not. Agonist-stimulated internalization of the AT1A-R was only slightly reduced in the βarr1-KO but was unaffected in the βarr2-KO cells. In the βarr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two β-arrestins to sequester the β2-AR revealed β-arrestin 2 to be 100-fold more potent than β-arrestin 1. Down-regulation of the β2-AR was also prevented in the βarr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two β-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.
Resumo:
The Drosophila mutant methuselah (mth) was identified from a screen for single gene mutations that extended average lifespan. Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Here we report the 2.3-Å resolution crystal structure of the Mth extracellular region, revealing a folding topology in which three primarily β-structure-containing domains meet to form a shallow interdomain groove containing a solvent-exposed tryptophan that may represent a ligand binding site. The Mth structure is analyzed in relation to predicted Mth homologs and potential ligand binding features.
Resumo:
Crouzon syndrome is an autosomal dominant condition primarily characterized by craniosynostosis. This syndrome has been associated with a variety of amino acid point mutations in the extracellular domain of fibroblast growth factor receptor 2 (FGFR2). FGFR2/Neu chimeras were generated by substituting the extracellular domain of Neu with that of FGFR2 containing the following Crouzon mutations: Tyr-340-->His; Cys-342-->Tyr; Cys-342-->Arg; Cys-342-->Ser; Ser-354-->Cys: and delta17 (deletion of amino acids 345-361). Each of the mutant chimeric FGFR2/Neu constructs stimulated focus formation in NIH 3T3 cells, indicating that Crouzon mutations can stimulate signal transduction through a heterologous receptor tyrosine kinase. In vitro kinase assay results indicate that FGFR2 receptors containing Crouzon mutations have increased tyrosine kinase activity and, when analyzed under nonreducing conditions, exhibited disulfide-bonded dimers. Thus the human developmental abnormality Crouzon syndrome arises from constitutive activation of FGFR2 due to aberrant intermolecular disulfide-bonding. These results together with our earlier observation that achondroplasia results from constitutive activation of the related receptor FGFR3, leads to the prediction that other malformation syndromes attributed to FGFRs, such as Pfeiffer syndrome and Thanatophoric dysplasia, also arise from constitutive receptor activation.
Resumo:
Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell biology. Our purpose was to obtain a Müller-derived cell line with progenitor characteristics and potential interest in regeneration processes. We obtained and characterized a murine Müller-derived cell line (MU-PH1), which proliferates indefinitely in vitro. Our results show that (i) MU-PH1 cells expresses the Müller cell markers Vimentin, S-100, glutamine synthetase and the progenitor and stem cell markers Nestin, Abcg2, Ascl1, α-tubulin and β-III-tubulin, whereas lacks the expression of CRALBP, GFAP, Chx10, Pax6 and Notch1 markers; (ii) MU-PH1 cell line stably express the photoreceptor markers recoverin, transducin, rhodopsin, blue and red/green opsins and also melanopsin; (iii) the presence of opsins was confirmed by the recording of intracellular free calcium levels during light stimulation; (iv) MU-PH1 cell line also expresses the melatonin MT1 and MT2 receptors; (v) MU-PH1 cells express TLR1, 2, 4 and 6 mRNA; (vi) MU-PH1 express TLR2 at cell surface level; (vii) Candida albicans increases TLR2 and TLR6 mRNA expression; (viii) C. albicans or TLR selective agonists (Pam(3)CysSK(4), LPS) did not elicit morphological changes nor TNF-α secretion; (ix) C. albicans and Pam(3)CysSK(4) augmented MU-PH1 neurospheres formation in a statistically significant manner. Our results indicate that MU-PH1 cell line could be of great interest both as a photoreceptor model and in retinal regeneration approaches and that TLR2 may also play a role in retinal cell proliferation.