970 resultados para Range ecology
Resumo:
Climate is warming and it is especially seen in arctic areas, where the warming trend is expected to be greatest. Arctic freshwater ecosystems, which are a very characteristic feature of the arctic landscape, are especially sensitive to climate change. They could be used as early warning systems, but more information about the ecosystem functioning and responses are needed for proper interpretation of the observations. Phytoplankton species and assemblages could be especially suitable for climate-related studies, since they have short generation times and react rapidly to changes in the environment. In addition, phytoplankton provides a good tool for lake classifications, since different species have different requirements and tolerance ranges for various environmental factors. The use of biological indicators is especially useful in arctic areas, were many of the chemical factors commonly fall under the detection limit and therefore do not provide much information about the environment. This work brings new information about species distribution and dynamics of arctic freshwater phytoplankton in relation to environmental factors. The phytoplankton of lakes in Finnish Lapland and other European high-altitude or high-latitude areas were compared. Most lakes were oligotrophic and dominated by flagellated species belonging to chrysophytes, cryptophytes and dinoflagellates. In Finnish Lapland cryptophytes were of less importance, whereas desmids had high species richness in many of the lakes. In Pan-European scale, geographical and catchment-related factors were explaining most of the differences in species distributions between different districts, whereas lake water chemistry (especially conductivity, SiO2 and pH) was most important regionally. Seasonal and interannual variation of phytoplankton was studied in subarctic Lake Saanajärvi. Characteristic phytoplankton species in this oligotrophic, dimictic lake belonged mainly to chrysophytes and diatoms. The maximum phytoplankton biomass in Lake Saanajärvi occurs during autumn, while spring biomass is very low. During years with heavy snow cover the lake suffers from pH drop caused by melt waters, but the effects of this acid pulse are restricted to surface layers and last for a relatively short period. In addition to some chemical parameters (mainly Ca and nutrients), length of the mixing cycle and physical factors such as lake water temperature and thermal stability of water column had major impact on phytoplankton dynamics. During a year with long and strong thermal stability, the phytoplankton community developed towards an equilibrium state, with heavy dominance of only a few taxa for a longer period of time. During a year with higher windiness and less thermal stability, the species composition was more diverse and species with different functional strategies were able to occur simultaneously. The results of this work indicate that although arctic lakes in general share many common features concerning their catchment and water chemistry, large differences in biological features can be found even in a relatively small area. Most likely the lakes with very different algal flora do not respond in a similar way to differences in the environmental factors, and more information about specific arctic lake types is needed. The results also show considerable year to year differences in phytoplankton species distribution and dynamics, and these changes are most likely linked to climatic factors.
Resumo:
Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.
Resumo:
It is a challenge to increase the visible-light photoresponses of wide-gap metal oxides. In this study, we proposed a new strategy to enhance the visible-light photoresponses of wide-gap semiconductors by deliberately designing a multi-scale nanostructure with controlled architecture. Hollow ZnO microspheres with constituent units in the shape of one-dimensional (1D) nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks are synthesized via an approach of two-step assembly, where the oligomers or the constituent nanostructures with specially designed structures are first formed, and then further assembled into complex morphologies. Through deliberate designing of constituent architectures allowing multiple visible-light scattering, reflections, and dispersion inside the multiscale nanostructures, enhanced wide range visible-light photoresponses of the ZnO hollow microspheres were successfully achieved. Compared to the one-step synthesized ZnO hollow microspheres, where no nanostructured constituents were produced, the ZnO hollow microspheres with 2D nanosheet stacks presented a 50 times higher photocurrent in the visible-light range (λ > 420 nm). The nanostructure induced visible-light photoresponse enhancement gives a direction to the development of novel photosensitive materials.
Resumo:
Vampire bats, Desmodus rotundus, must maximize their feeding cycle of one blood meal per day by being efficient in the stalking and acquisition of their food. Riskin and Hermanson documented the running gait of the common vampire bat and observed they were efficient at running speeds, using longer stride lengths and thus decreased stride frequency. We obtained preliminary data on gait maintained for up to 10 minutes on a moving treadmill belt at speeds ranging from 0.23 to 0.74 m/s, which spanned a range from walking to running gaits. Bats tended to transition between gaits at about 0.40 m/s. Fourteen bats were studied and included four that were able to walk or run for 10 minutes. There was no significant change in either stride duration or frequency associated with an increase in speed. We estimated O2 consumption and CO2 production both before and 5 minutes after exercise, and found that O2 consumption increased 1 minute and 5 minutes after exercise. CO2 levels increased significantly 1 minute after exercise, but tended back towards pre-exercise level 5 minutes after exercise. Two bats were tested for blood O2, CO2 and pH levels. Interestingly, pH levels fell from 7.3 to about 7.0, indicating lactate accumulation.
Resumo:
In the nursery pollination system of figs (Ficus, Moraceae), flower-bearing receptacles called syconia breed pollinating wasps and are units of both pollination and seed dispersal. Pollinators and mammalian seed dispersers are attracted to syconia by volatile organic compounds (VOCs). In monoecious figs, syconia produce both wasps and seeds, while in (gyno)dioecious figs, male (gall) fig trees produce wasps and female (seed) fig trees produce seeds. VOCs were collected using dynamic headspace adsorption methods on freshly collected figs from different trees using Super Q® collection traps. VOC profiles were determined using gas chromatography–mass spectrometry (GC–MS).The VOC profile of receptive and dispersal phase figs were clearly different only in the dioecious mammal-dispersed Ficus hispida but not in dioecious bird-dispersed F. exasperata and monoecious bird-dispersed F. tsjahela. The VOC profile of dispersal phase female figs was clearly different from that of male figs only in F. hispida but not in F. exasperata, as predicted from the phenology of syconium production which only in F. hispida overlaps between male and female trees. Greater difference in VOC profile in F. hispida might ensure preferential removal of seed figs by dispersal agents when gall figs are simultaneously available.The VOC profile of only mammal-dispersed female figs of F. hispida had high levels of fatty acid derivatives such as amyl-acetates and 2-heptanone, while monoterpenes, sesquiterpenes and shikimic acid derivatives were predominant in the other syconial types. A bird- and mammal-repellent compound methyl anthranilate occurred only in gall figs of both dioecious species, as expected, since gall figs containing wasp pollinators should not be consumed by dispersal agents.
Resumo:
Synchronising bushcricket males achieve synchrony by delaying their chirps in response to calling neighbours. In multi-male choruses, males that delay chirps in response to all their neighbours would remain silent most of the time and be unable to attract mates. This problem could be overcome if the afferent auditory system exhibited selective attention, and thus a male interacted only with a subset of neighbours. We investigated whether individuals of the bushcricket genus Mecopoda restricted their attention to louder chirps neurophysiologically, behaviourally and through spacing. We found that louder leading chirps were preferentially represented in the omega neuron but the representation of softer following chirps was not completely abolished. Following chirps that were 20 dB louder than leading chirps were better represented than leading chirps. During acoustic interactions, males synchronised with leading chirps even when the following chirps were 20 dB louder. Males did not restrict their attention to louder chirps during interactions but were affected by all chirps above a particular threshold. In the field, we found that males on average had only one or two neighbours whose calls were above this threshold. Selective attention is thus achieved in this bushcricket through spacing rather than neurophysiological filtering of softer signals.
Resumo:
A switched rectifier DC voltage source three-level neutral-point-clamped (NPC) converter topology is proposed here to alleviate the inverter from capacitor voltage balancing in three-level drive systems. The proposed configuration requires only one DC link with a voltage of half of that needed in a conventional NPC inverter. To obtain a rated DC link voltage, the rectifier DC source is alternately connected in parallel to one of the two series capacitors using two switches and two diodes with device voltage ratings of half the total DC bus voltage. The frequency at which the voltage source is switched is independent of the inverter and will not affect its operation since the switched voltage source in this configuration balances the capacitors automatically. The proposed configuration can also be used as a conventional two-level inverter in the lower modulation index range, thereby increasing the reliability of the drivesystem. A space-vector-based PWM scheme is used to verify this proposed topology on a laboratory system.
Resumo:
Synchronising bushcricket males achieve synchrony by delaying their chirps in response to calling neighbours. In multi-male choruses, males that delay chirps in response to all their neighbours would remain silent most of the time and be unable to attract mates. This problem could be overcome if the afferent auditory system exhibited selective attention, and thus a male interacted only with a subset of neighbours. We investigated whether individuals of the bushcricket genus Mecopoda restricted their attention to louder chirps neurophysiologically, behaviourally and through spacing. We found that louder leading chirps were preferentially represented in the omega neuron but the representation of softer following chirps was not completely abolished. Following chirps that were 20 dB louder than leading chirps were better represented than leading chirps. During acoustic interactions, males synchronised with leading chirps even when the following chirps were 20 dB louder. Males did not restrict their attention to louder chirps during interactions but were affected by all chirps above a particular threshold. In the field, we found that males on average had only one or two neighbours whose calls were above this threshold. Selective attention is thus achieved in this bushcricket through spacing rather than neurophysiological filtering of softer signals.
Resumo:
Regeneration ecology, diversity of native woody species and its potential for landscape restoration was studied in the remnant natural forest at the College of Forestry and Natural Resources at Wondo Genet, Ethiopia. The type of forest is Afromontane rainforest , with many valuable tree species like Aningeria adolfi-friederici, and it is an important provider of ecological, social and economical services for the population that lives in this area. The study contains two parts, natural regeneration studies (at the natural forest) and interviews with farmers in the nearby village of the remnant patch. The objective of the first part was to investigate the floristic composition, densitiy and regeneration profiles of native woody species in the forest, paying special attention to woody species that are considered the most relevant (socio-economic). The second part provided information on woody species preferred by the farmers and on multiple uses of the adjacent natural forest, it also provided information and analysed perceptions on forest degradation. Systematic plot sampling was used in the forest inventory. Twenty square plots of 20 x 20 m were assessed, with 38 identified woody species (the total number of species was 45), representing 26 families. Of these species 61% were trees, 13% shrubs, 11% lianas and 16% species that could have both life forms. An analysis of natural regeneration of five important tree species in the natural forest showed that Aningeria adolfi-friederici had the best regeneration results. An analysis of population structure (as determined by height classes) of two commercially important woody species in the forest, Aningeria adolfi-friederici and Podocarpus falcatus, showed a marked difference: Aningeria had a typical “reversed J” frequency distribution, while Podocarpus showed very low values in all height classes. Multi dimensional scaling (MDS) was used to map the sample plots according to their similarity in species composition, using the Sørensen quantitative index, coupled with indicator species analysis .Three groups were identified with respective indicator species: Group 1 – Adhatoda schimperiana, Group 2 – Olea hochstetteri , Group 3 – Acacia senegal and Aningeria adolfi-friederici. Thirty questionnaire interviews were conducted with farmers in the village of Gotu Onoma that use the nearby remant forest patch. Their tree preferences were exotic species such as Eucalyptus globulus for construction and fuelwood and Grevillea robusta for shade and fertility. Considering forest land degradation farmers were aware of the problem and suggested that the governmental institutions address the problem by planting more Eucalyptus globulus. The natural forest seemed to have moderate levels of disturbance and it was still floristically diverse. However, the low rate of natural regeneration of Podocarpus falcatus suggested that this species is threatened and must be a priority in conservation actions. Plantations and agroforestry seem to be possible solutions for rehabilitation of the surrounding degraded lands, thereby decreasing the existent pressure in the remnant natural forest.
Resumo:
Agriculture is an economic activity that heavily relies on the availability of natural resources. Through its role in food production agriculture is a major factor affecting public welfare and health, and its indirect contribution to gross domestic product and employment is significant. Agriculture also contributes to numerous ecosystem services through management of rural areas. However, the environmental impact of agriculture is considerable and reaches far beyond the agroecosystems. The questions related to farming for food production are, thus, manifold and of great public concern. Improving environmental performance of agriculture and sustainability of food production, sustainabilizing food production, calls for application of wide range of expertise knowledge. This study falls within the field of agro-ecology, with interphases to food systems and sustainability research and exploits the methods typical of industrial ecology. The research in these fields extends from multidisciplinary to interdisciplinary and transdisciplinary, a holistic approach being the key tenet. The methods of industrial ecology have been applied extensively to explore the interaction between human economic activity and resource use. Specifically, the material flow approach (MFA) has established its position through application of systematic environmental and economic accounting statistics. However, very few studies have applied MFA specifically to agriculture. The MFA approach was used in this thesis in such a context in Finland. The focus of this study is the ecological sustainability of primary production. The aim was to explore the possibilities of assessing ecological sustainability of agriculture by using two different approaches. In the first approach the MFA-methods from industrial ecology were applied to agriculture, whereas the other is based on the food consumption scenarios. The two approaches were used in order to capture some of the impacts of dietary changes and of changes in production mode on the environment. The methods were applied at levels ranging from national to sector and local levels. Through the supply-demand approach, the viewpoint changed between that of food production to that of food consumption. The main data sources were official statistics complemented with published research results and expertise appraisals. MFA approach was used to define the system boundaries, to quantify the material flows and to construct eco-efficiency indicators for agriculture. The results were further elaborated for an input-output model that was used to analyse the food flux in Finland and to determine its relationship to the economy-wide physical and monetary flows. The methods based on food consumption scenarios were applied at regional and local level for assessing feasibility and environmental impacts of relocalising food production. The approach was also used for quantification and source allocation of greenhouse gas (GHG) emissions of primary production. GHG assessment provided, thus, a means of crosschecking the results obtained by using the two different approaches. MFA data as such or expressed as eco-efficiency indicators, are useful in describing the overall development. However, the data are not sufficiently detailed for identifying the hot spots of environmental sustainability. Eco-efficiency indicators should not be bluntly used in environmental assessment: the carrying capacity of the nature, the potential exhaustion of non-renewable natural resources and the possible rebound effect need also to be accounted for when striving towards improved eco-efficiency. The input-output model is suitable for nationwide economy analyses and it shows the distribution of monetary and material flows among the various sectors. Environmental impact can be captured only at a very general level in terms of total material requirement, gaseous emissions, energy consumption and agricultural land use. Improving environmental performance of food production requires more detailed and more local information. The approach based on food consumption scenarios can be applied at regional or local scales. Based on various diet options the method accounts for the feasibility of re-localising food production and environmental impacts of such re-localisation in terms of nutrient balances, gaseous emissions, agricultural energy consumption, agricultural land use and diversity of crop cultivation. The approach is applicable anywhere, but the calculation parameters need to be adjusted so as to comply with the specific circumstances. The food consumption scenario approach, thus, pays attention to the variability of production circumstances, and may provide some environmental information that is locally relevant. The approaches based on the input-output model and on food consumption scenarios represent small steps towards more holistic systemic thinking. However, neither one alone nor the two together provide sufficient information for sustainabilizing food production. Environmental performance of food production should be assessed together with the other criteria of sustainable food provisioning. This requires evaluation and integration of research results from many different disciplines in the context of a specified geographic area. Foodshed area that comprises both the rural hinterlands of food production and the population centres of food consumption is suggested to represent a suitable areal extent for such research. Finding a balance between the various aspects of sustainability is a matter of optimal trade-off. The balance cannot be universally determined, but the assessment methods and the actual measures depend on what the bottlenecks of sustainability are in the area concerned. These have to be agreed upon among the actors of the area
Resumo:
The question at issue in this dissertation is the epistemic role played by ecological generalizations and models. I investigate and analyze such properties of generalizations as lawlikeness, invariance, and stability, and I ask which of these properties are relevant in the context of scientific explanations. I will claim that there are generalizable and reliable causal explanations in ecology by generalizations, which are invariant and stable. An invariant generalization continues to hold or be valid under a special change called an intervention that changes the value of its variables. Whether a generalization remains invariant during its interventions is the criterion that determines whether it is explanatory. A generalization can be invariant and explanatory regardless of its lawlike status. Stability deals with a generality that has to do with holding of a generalization in possible background conditions. The more stable a generalization, the less dependent it is on background conditions to remain true. Although it is invariance rather than stability of generalizations that furnishes us with explanatory generalizations, there is an important function that stability has in this context of explanations, namely, stability furnishes us with extrapolability and reliability of scientific explanations. I also discuss non-empirical investigations of models that I call robustness and sensitivity analyses. I call sensitivity analyses investigations in which one model is studied with regard to its stability conditions by making changes and variations to the values of the model s parameters. As a general definition of robustness analyses I propose investigations of variations in modeling assumptions of different models of the same phenomenon in which the focus is on whether they produce similar or convergent results or not. Robustness and sensitivity analyses are powerful tools for studying the conditions and assumptions where models break down and they are especially powerful in pointing out reasons as to why they do this. They show which conditions or assumptions the results of models depend on. Key words: ecology, generalizations, invariance, lawlikeness, philosophy of science, robustness, explanation, models, stability
Resumo:
Islam, Development, Ecology,
Resumo:
Herbivorous insects, their host plants and natural enemies form the largest and most species-rich communities on earth. But what forces structure such communities? Do they represent random collections of species, or are they assembled by given rules? To address these questions, food webs offer excellent tools. As a result of their versatile information content, such webs have become the focus of intensive research over the last few decades. In this thesis, I study herbivore-parasitoid food webs from a new perspective: I construct multiple, quantitative food webs in a spatially explicit setting, at two different scales. Focusing on food webs consisting of specialist herbivores and their natural enemies on the pedunculate oak, Quercus robur, I examine consistency in food web structure across space and time, and how landscape context affects this structure. As an important methodological development, I use DNA barcoding to resolve potential cryptic species in the food webs, and to examine their effect on food web structure. I find that DNA barcoding changes our perception of species identity for as many as a third of the individuals, by reducing misidentifications and by resolving several cryptic species. In terms of the variation detected in food web structure, I find surprising consistency in both space and time. From a spatial perspective, landscape context leaves no detectable imprint on food web structure, while species richness declines significantly with decreasing connectivity. From a temporal perspective, food web structure remains predictable from year to year, despite considerable species turnover in local communities. The rate of such turnover varies between guilds and species within guilds. The factors best explaining these observations are abundant and common species, which have a quantitatively dominant imprint on overall structure, and suffer the lowest turnover. By contrast, rare species with little impact on food web structure exhibit the highest turnover rates. These patterns reveal important limitations of modern metrics of quantitative food web structure. While they accurately describe the overall topology of the web and its most significant interactions, they are disproportionately affected by species with given traits, and insensitive to the specific identity of species. As rare species have been shown to be important for food web stability, metrics depicting quantitative food web structure should then not be used as the sole descriptors of communities in a changing world. To detect and resolve the versatile imprint of global environmental change, one should rather use these metrics as one tool among several.
Resumo:
We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.
Resumo:
We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.