948 resultados para Random matrix theory
Resumo:
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.
Resumo:
* Research supported by NATO GRANT CRG 900 798 and by Humboldt Award for U.S. Scientists.
Resumo:
Technology of classification of electronic documents based on the theory of disturbance of pseudoinverse matrices was proposed.
Resumo:
A range of physical and engineering systems exhibit an irregular complex dynamics featuring alternation of quiet and burst time intervals called the intermittency. The intermittent dynamics most popular in laser science is the on-off intermittency [1]. The on-off intermittency can be understood as a conversion of the noise in a system close to an instability threshold into effective time-dependent fluctuations which result in the alternation of stable and unstable periods. The on-off intermittency has been recently demonstrated in semiconductor, Erbium doped and Raman lasers [2-5]. Recently demonstrated random distributed feedback (random DFB) fiber laser has an irregular dynamics near the generation threshold [6,7]. Here we show the intermittency in the cascaded random DFB fiber laser. We study intensity fluctuations in a random DFB fiber laser based on nitrogen doped fiber. The laser generates first and second Stokes components 1120 nm and 1180 nm respectively under an appropriate pumping. We study the intermittency in the radiation of the second Stokes wave. The typical time trace near the generation threshold of the second Stokes wave (Pth) is shown at Fig. 1a. From the number of long enough time-traces we calculate statistical distribution between major spikes in time dynamics, Fig. 1b. To eliminate contribution of high frequency components of spikes we use a low pass filter along with the reference value of the output power. Experimental data is fitted by power law,
Resumo:
Since the development of large scale power grid interconnections and power markets, research on available transfer capability (ATC) has attracted great attention. The challenges for accurate assessment of ATC originate from the numerous uncertainties in electricity generation, transmission, distribution and utilization sectors. Power system uncertainties can be mainly described as two types: randomness and fuzziness. However, the traditional transmission reliability margin (TRM) approach only considers randomness. Based on credibility theory, this paper firstly built models of generators, transmission lines and loads according to their features of both randomness and fuzziness. Then a random fuzzy simulation is applied, along with a novel method proposed for ATC assessment, in which both randomness and fuzziness are considered. The bootstrap method and multi-core parallel computing technique are introduced to enhance the processing speed. By implementing simulation for the IEEE-30-bus system and a real-life system located in Northwest China, the viability of the models and the proposed method is verified.
Resumo:
Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.
Resumo:
MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday
Resumo:
Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията на разклоняващите се процеси.
Resumo:
2000 Mathematics Subject Classification: 62J12, 62K15, 91B42, 62H99.
Resumo:
2000 Mathematics Subject Classification: 94A29, 94B70
Resumo:
2000 Mathematics Subject Classification: Primary 60J45, 60J50, 35Cxx; Secondary 31Cxx.
Resumo:
2000 Mathematics Subject Classification: 62P30.
Resumo:
Random fiber lasers blend together attractive features of traditional random lasers, such as low cost and simplicity of fabrication, with high-performance characteristics of conventional fiber lasers, such as good directionality and high efficiency. Low coherence of random lasers is important for speckle-free imaging applications. The random fiber laser with distributed feedback proposed in 2010 led to a quickly developing class of light sources that utilize inherent optical fiber disorder in the form of the Rayleigh scattering and distributed Raman gain. The random fiber laser is an interesting and practically important example of a photonic device based on exploitation of optical medium disorder. We provide an overview of recent advances in this field, including high-power and high-efficiency generation, spectral and statistical properties of random fiber lasers, nonlinear kinetic theory of such systems, and emerging applications in telecommunications and distributed sensing.
Resumo:
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Resumo:
A dolgozatban a döntéselméletben fontos szerepet játszó páros összehasonlítás mátrix prioritásvektorának meghatározására új megközelítést alkalmazunk. Az A páros összehasonlítás mátrix és a prioritásvektor által definiált B konzisztens mátrix közötti eltérést a Kullback-Leibler relatív entrópia-függvény segítségével mérjük. Ezen eltérés minimalizálása teljesen kitöltött mátrix esetében konvex programozási feladathoz vezet, nem teljesen kitöltött mátrix esetében pedig egy fixpont problémához. Az eltérésfüggvényt minimalizáló prioritásvektor egyben azzal a tulajdonsággal is rendelkezik, hogy az A mátrix elemeinek összege és a B mátrix elemeinek összege közötti különbség éppen az eltérésfüggvény minimumának az n-szerese, ahol n a feladat mérete. Így az eltérésfüggvény minimumának értéke két szempontból is lehet alkalmas az A mátrix inkonzisztenciájának a mérésére. _____ In this paper we apply a new approach for determining a priority vector for the pairwise comparison matrix which plays an important role in Decision Theory. The divergence between the pairwise comparison matrix A and the consistent matrix B defined by the priority vector is measured with the help of the Kullback-Leibler relative entropy function. The minimization of this divergence leads to a convex program in case of a complete matrix, leads to a fixed-point problem in case of an incomplete matrix. The priority vector minimizing the divergence also has the property that the difference of the sums of elements of the matrix A and the matrix B is n times the minimum of the divergence function where n is the dimension of the problem. Thus we developed two reasons for considering the value of the minimum of the divergence as a measure of inconsistency of the matrix A.