961 resultados para Quantum field theory.
Resumo:
In this thesis, we present our work about some generalisations of ideas, techniques and physical interpretations typical for integrable models to one of the most outstanding advances in theoretical physics of nowadays: the AdS/CFT correspondences. We have undertaken the problem of testing this conjectured duality under various points of view, but with a clear starting point - the integrability - and with a clear ambitious task in mind: to study the finite-size effects in the energy spectrum of certain string solutions on a side and in the anomalous dimensions of the gauge theory on the other. Of course, the final desire woul be the exact comparison between these two faces of the gauge/string duality. In few words, the original part of this work consists in application of well known integrability technologies, in large parte borrowed by the study of relativistic (1+1)-dimensional integrable quantum field theories, to the highly non-relativisic and much complicated case of the thoeries involved in the recent conjectures of AdS5/CFT4 and AdS4/CFT3 corrspondences. In details, exploiting the spin chain nature of the dilatation operator of N = 4 Super-Yang-Mills theory, we concentrated our attention on one of the most important sector, namely the SL(2) sector - which is also very intersting for the QCD understanding - by formulating a new type of nonlinear integral equation (NLIE) based on a previously guessed asymptotic Bethe Ansatz. The solutions of this Bethe Ansatz are characterised by the length L of the correspondent spin chain and by the number s of its excitations. A NLIE allows one, at least in principle, to make analytical and numerical calculations for arbitrary values of these parameters. The results have been rather exciting. In the important regime of high Lorentz spin, the NLIE clarifies how it reduces to a linear integral equations which governs the subleading order in s, o(s0). This also holds in the regime with L ! 1, L/ ln s finite (long operators case). This region of parameters has been particularly investigated in literature especially because of an intriguing limit into the O(6) sigma model defined on the string side. One of the most powerful methods to keep under control the finite-size spectrum of an integrable relativistic theory is the so called thermodynamic Bethe Ansatz (TBA). We proposed a highly non-trivial generalisation of this technique to the non-relativistic case of AdS5/CFT4 and made the first steps in order to determine its full spectrum - of energies for the AdS side, of anomalous dimensions for the CFT one - at any values of the coupling constant and of the size. At the leading order in the size parameter, the calculation of the finite-size corrections is much simpler and does not necessitate the TBA. It consists in deriving for a nonrelativistc case a method, invented for the first time by L¨uscher to compute the finite-size effects on the mass spectrum of relativisic theories. So, we have formulated a new version of this approach to adapt it to the case of recently found classical string solutions on AdS4 × CP3, inside the new conjecture of an AdS4/CFT3 correspondence. Our results in part confirm the string and algebraic curve calculations, in part are completely new and then could be better understood by the rapidly evolving developments of this extremely exciting research field.
Resumo:
In this work, we discuss some theoretical topics related to many-body physics in ultracold atomic and molecular gases. First, we present a comparison between experimental data and theoretical predictions in the context of quantum emulator of quantum field theories, finding good results which supports the efficiency of such simulators. In the second and third parts, we investigate several many-body properties of atomic and molecular gases confined in one dimension.
Resumo:
In this thesis we consider three different models for strongly correlated electrons, namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model, both with a semi-elliptical density of states in the limit of infinite dimensions d, and the attractive Hubbard model on a square lattice in d=2.
In the first part, we study a two-band Hubbard model with unequal bandwidths and anisotropic Hund's rule coupling (J_z-model) in the limit of infinite dimensions within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result is that the J_z-model describes the occurrence of an orbital-selective Mott transition (OSMT), in contrast to earlier findings. We investigate the model with a high-precision DMFT algorithm, which was developed as part of this thesis and which supplements QMC with a high-frequency expansion of the self-energy.
The main advantage of this scheme is the extraordinary accuracy of the numerical solutions, which can be obtained already with moderate computational effort, so that studies of multi-orbital systems within the DMFT+QMC are strongly improved. We also found that a suitably defined
Falicov-Kimball (FK) model exhibits an OSMT, revealing the close connection of the Falicov-Kimball physics to the J_z-model in the OSM phase.
In the second part of this thesis we study the attractive Hubbard model in two spatial dimensions within second-order self-consistent perturbation theory.
This model is considered on a square lattice at finite doping and at low temperatures. Our main result is that the predictions of first-order perturbation theory (Hartree-Fock approximation) are renormalized by a factor of the order of unity even at arbitrarily weak interaction (U->0). The renormalization factor q can be evaluated as a function of the filling n for 0
Resumo:
In dieser Arbeit werden vier unterschiedliche, stark korrelierte, fermionische Mehrbandsysteme untersucht. Es handelt sich dabei um ein Mehrstörstellen-Anderson-Modell, zwei Hubbard-Modelle sowie ein Mehrbandsystem, wie es sich aus einer ab initio-Beschreibung für ein korreliertes Halbmetall ergibt.rnrnDie Betrachtung des Mehrstörstellen-Anderson-Modells konzentriert sich auf die Untersuchung des Einflusses der Austauschwechselwirkung und der nicht-lokalen Korrelationen zwischen zwei Störstellen in einem einfach-kubischen Gitter. Das zentrale Resultat ist die Abstandsabhängigkeit der Korrelationen der Störstellenelektronen, welche stark von der Gitterdimension und der relativen Position der Störstellen abhängen. Bemerkenswert ist hier die lange Reichweite der Korrelationen in der Diagonalrichtung des Gitters. Außerdem ergibt sich, dass eine antiferromagnetische Austauschwechselwirkung ein Singulett zwischen den Störstellenelektronen gegenüber den Kondo-Singuletts der einzelnen Störstellen favorisiert und so den Kondo-Effekt der einzelnen Störstellen behindert.rnrnEin Zweiband-Hubbard-Modell, das Jz-Modell, wird im Hinblick auf seine Mott-Phasen in Abhängigkeit von Dotierung und Kristallfeldaufspaltung auf dem Bethe-Gitter untersucht. Die Entartung der Bänder ist durch eine unterschiedliche Bandbreite aufgehoben. Wichtigstes Ergebnis sind die Phasendiagramme in Bezug auf Wechselwirkung, Gesamtfüllung und Kristallfeldparameter. Im Vergleich zu Einbandmodellen kommen im Jz-Modell sogenannte orbital-selektive Mott-Phasen hinzu, die, abhängig von Wechselwirkung, Gesamtfüllung und Kristallfeldparameter, einerseits metallischen und andererseits isolierenden Charakter haben. Ein neuer Aspekt ergibt sich durch den Kristallfeldparameter, der die ionischen Einteilchenniveaus relativ zueinander verschiebt, und für bestimmte Werte eine orbital-selektive Mott-Phase des breiten Bands ermöglicht. Im Vergleich mit analytischen Näherungslösungen und Einbandmodellen lassen sich generische Vielteilchen- und Korrelationseffekte von typischen Mehrband- und Einteilcheneffekten differenzieren.rnrnDas zweite untersuchte Hubbard-Modell beschreibt eine magneto-optische Falle mit einer endlichen Anzahl Gitterplätze, in welcher fermionische Atome platziert sind. Es wird eine z-antiferromagnetische Phase unter Berücksichtigung nicht-lokaler Vielteilchenkorrelationen erhalten, und dabei werden bekannte Ergebnisse einer effektiven Einteilchenbeschreibung verbessert.rnrnDas korrelierte Halbmetall wird im Rahmen einer Mehrbandrechnung im Hinblick auf Korrelationseffekte untersucht. Ausgangspunkt ist eine ab initio-Beschreibung durch die Dichtefunktionaltheorie (DFT), welche dann durch die Hinzunahme lokaler Korrelationen ergänzt wird. Die Vielteilcheneffekte werden an Hand einer einfachen Wechselwirkungsnäherung verdeutlicht, und für ein Wechselwirkungsmodell in sphärischer Symmetrie präzisiert. Es ergibt sich nur eine schwache Quasiteilchenrenormierung. Besonders für röntgenspektroskopische Experimente wird eine gute Übereinstimmung erzielt.rnrnDie numerischen Ergebnisse für das Jz-Modell basieren auf Quanten-Monte-Carlo-Simulationen im Rahmen der dynamischen Molekularfeldtheorie (DMFT). Für alle anderen Systeme wird ein Mehrband-Algorithmus entwickelt und implementiert, welcher explizit nicht-diagonale Mehrbandprozesse berücksichtigt.rnrn
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Modellierung niederenergetischer elektromagnetischer und hadronischer Prozesse im Rahmen einer manifest lorentzinvarianten, chiralen effektiven Feldtheorie unter expliziter, dynamischer Berücksichtigung resonanter, das heißt vektormesonischer Freiheitsgrade. Diese effektive Theorie kann daher als Approximation der grundlegenden Quantenchromodynamik bei kleinen Energien verstanden werden. Besonderes Augenmerk wird dabei auf das verwendete Zähl- sowie Renormierungschema gelegt, wodurch eine konsistente Beschreibung mesonischer Prozesse bis zu Energien von etwa 1GeV ermöglicht wird. Das verwendete Zählschema beruht dabei im Wesentlichen auf einem Argument für großes N_c (Anzahl der Farbfreiheitsgrade) und lässt eine äquivalente Behandlung von Goldstonebosonen (Pionen) und Resonanzen (Rho- und Omegamesonen) zu. Als Renormierungsschema wird das für (bezüglich der starken Wechselwirkung) instabile Teilchen besonders geeignete complex-mass scheme als Erweiterung des extended on-mass-shell scheme verwendet, welches in Kombination mit dem BPHZ-Renormierungsverfahren (benannt nach Bogoliubov, Parasiuk, Hepp und Zimmermann) ein leistungsfähiges Konzept zur Berechnung von Quantenkorrekturen in dieser chiralen effektiven Feldtheorie darstellt. Sämtliche vorgenommenen Rechnungen schließen Terme der chiralen Ordnung vier sowie einfache Schleifen in Feynman-Diagrammen ein. Betrachtet werden unter anderem der Vektorformfaktor des Pions im zeitartigen Bereich, die reelle Compton-Streuung (beziehungsweise Photonenfusion) im neutralen und geladenen Kanal sowie die virtuelle Compton-Streuung, eingebettet in die Elektron-Positron-Annihilation. Zur Extraktion der Niederenergiekopplungskonstanten der Theorie wird letztendlich eine Reihe experimenteller Datensätze verschiedenartiger Observablen verwendet. Die hier entwickelten Methoden und Prozeduren - und insbesondere deren technische Implementierung - sind sehr allgemeiner Natur und können daher auch an weitere Problemstellungen aus diesem Gebiet der niederenergetischen Quantenchromodynamik angepasst werden.
Resumo:
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.
Holes localized on a Skyrmion in a doped antiferromagnet on the honeycomb lattice: Symmetry analysis
Resumo:
Using the low-energy effective field theory for hole-doped antiferromagnets on the honeycomb lattice, we study the localization of holes on Skyrmions, as a potential mechanism for the preformation of Cooper pairs. In contrast to the square lattice case, for the standard radial profile of the Skyrmion on the honeycomb lattice, only holes residing in one of the two hole pockets can get localized. This differs qualitatively from hole pairs bound by magnon exchange, which is most attractive between holes residing in different momentum space pockets. On the honeycomb lattice, magnon exchange unambiguously leads to f-wave pairing, which is also observed experimentally. Using the collective-mode quantization of the Skyrmion, we determine the quantum numbers of the localized hole pairs. Again, f-wave symmetry is possible, but other competing pairing symmetries cannot be ruled out.
Resumo:
We consider a class of models with gauged U(1) R symmetry in 4D N=1 super-gravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1) R symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1) R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1) R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1) R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b K , b CK ).
Resumo:
The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
Resumo:
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.
Resumo:
The objective of this thesis is to study the distribution of the number of principal ideals generated by an irreducible element in an algebraic number field, namely in the non-unique factorization ring of integers of such a field. In particular we are investigating the size of M(x), defined as M ( x ) =∑ (α) α irred.|N (α)|≤≠ 1, where x is any positive real number and N (α) is the norm of α. We finally obtain asymptotic results for hl(x).
Resumo:
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed