937 resultados para Pseudo-Differential Boundary Problems
Resumo:
In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.
Resumo:
A reaction-diffusion equation with variable diffusivity and non-linear flux boundary condition is considered. The goal is to give sufficient conditions on the diffusivity function for nonexistence and also for existence of nonconstant stable stationary solutions. Applications are given for the main result of nonexistence.
Resumo:
The thesis consists of three independent parts. Part I: Polynomial amoebas We study the amoeba of a polynomial, as de ned by Gelfand, Kapranov and Zelevinsky. A central role in the treatment is played by a certain convex function which is linear in each complement component of the amoeba, which we call the Ronkin function. This function is used in two di erent ways. First, we use it to construct a polyhedral complex, which we call a spine, approximating the amoeba. Second, the Monge-Ampere measure of the Ronkin function has interesting properties which we explore. This measure can be used to derive an upper bound on the area of an amoeba in two dimensions. We also obtain results on the number of complement components of an amoeba, and consider possible extensions of the theory to varieties of codimension higher than 1. Part II: Differential equations in the complex plane We consider polynomials in one complex variable arising as eigenfunctions of certain differential operators, and obtain results on the distribution of their zeros. We show that in the limit when the degree of the polynomial approaches innity, its zeros are distributed according to a certain probability measure. This measure has its support on the union of nitely many curve segments, and can be characterized by a simple condition on its Cauchy transform. Part III: Radon transforms and tomography This part is concerned with different weighted Radon transforms in two dimensions, in particular the problem of inverting such transforms. We obtain stability results of this inverse problem for rather general classes of weights, including weights of attenuation type with data acquisition limited to a 180 degrees range of angles. We also derive an inversion formula for the exponential Radon transform, with the same restriction on the angle.
Resumo:
The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.
Resumo:
[EN]Isogeometric analysis (IGA) has arisen as an attempt to unify the fields of CAD and classical finite element methods. The main idea of IGA consists in using for analysis the same functions (splines) that are used in CAD representation of the geometry. The main advantage with respect to the traditional finite element method is a higher smoothness of the numerical solution and more accurate representation of the geometry. IGA seems to be a promising tool with wide range of applications in engineering. However, this relatively new technique have some open problems that require a solution. In this work we present our results and contributions to this issue…
Resumo:
Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.
Resumo:
In der vorliegenden Arbeit werden zwei physikalischeFließexperimente an Vliesstoffen untersucht, die dazu dienensollen, unbekannte hydraulische Parameter des Materials, wiez. B. die Diffusivitäts- oder Leitfähigkeitsfunktion, ausMeßdaten zu identifizieren. Die physikalische undmathematische Modellierung dieser Experimente führt auf einCauchy-Dirichlet-Problem mit freiem Rand für die degeneriertparabolische Richardsgleichung in derSättigungsformulierung, das sogenannte direkte Problem. Ausder Kenntnis des freien Randes dieses Problems soll dernichtlineare Diffusivitätskoeffizient derDifferentialgleichung rekonstruiert werden. Für diesesinverse Problem stellen wir einOutput-Least-Squares-Funktional auf und verwenden zu dessenMinimierung iterative Regularisierungsverfahren wie dasLevenberg-Marquardt-Verfahren und die IRGN-Methode basierendauf einer Parametrisierung des Koeffizientenraumes durchquadratische B-Splines. Für das direkte Problem beweisen wirunter anderem Existenz und Eindeutigkeit der Lösung desCauchy-Dirichlet-Problems sowie die Existenz des freienRandes. Anschließend führen wir formal die Ableitung desfreien Randes nach dem Koeffizienten, die wir für dasnumerische Rekonstruktionsverfahren benötigen, auf einlinear degeneriert parabolisches Randwertproblem zurück.Wir erläutern die numerische Umsetzung und Implementierungunseres Rekonstruktionsverfahrens und stellen abschließendRekonstruktionsergebnisse bezüglich synthetischer Daten vor.
Resumo:
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A promising result is that one can qualitatively reconstruct the conductivity inside the cross-section of a human chest. Even though the human volunteer is neither two-dimensional nor circular, such reconstructions can be useful in medical applications: monitoring for lung problems such as accumulating fluid or a collapsed lung and noninvasive monitoring of heart function and blood flow.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
The Factorization Method localizes inclusions inside a body from measurements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering symmetric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfies a coerciveness condition which can immediately be translated into a condition on the coefficients of a given real elliptic problem. We demonstrate how several known applications of the Factorization Method are covered by our general results and deduce the range characterization for a new example in linear elasticity.
Resumo:
Over the years the Differential Quadrature (DQ) method has distinguished because of its high accuracy, straightforward implementation and general ap- plication to a variety of problems. There has been an increase in this topic by several researchers who experienced significant development in the last years. DQ is essentially a generalization of the popular Gaussian Quadrature (GQ) used for numerical integration functions. GQ approximates a finite in- tegral as a weighted sum of integrand values at selected points in a problem domain whereas DQ approximate the derivatives of a smooth function at a point as a weighted sum of function values at selected nodes. A direct appli- cation of this elegant methodology is to solve ordinary and partial differential equations. Furthermore in recent years the DQ formulation has been gener- alized in the weighting coefficients computations to let the approach to be more flexible and accurate. As a result it has been indicated as Generalized Differential Quadrature (GDQ) method. However the applicability of GDQ in its original form is still limited. It has been proven to fail for problems with strong material discontinuities as well as problems involving singularities and irregularities. On the other hand the very well-known Finite Element (FE) method could overcome these issues because it subdivides the computational domain into a certain number of elements in which the solution is calculated. Recently, some researchers have been studying a numerical technique which could use the advantages of the GDQ method and the advantages of FE method. This methodology has got different names among each research group, it will be indicated here as Generalized Differential Quadrature Finite Element Method (GDQFEM).
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.