918 resultados para Polymeric drugs
Resumo:
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.
Resumo:
Illicit drug analyses usually focus on the identification and quantitation of questioned material to support the judicial process. In parallel, more and more laboratories develop physical and chemical profiling methods in a forensic intelligence perspective. The analysis of large databases resulting from this approach enables not only to draw tactical and operational intelligence, but may also contribute to the strategic overview of drugs markets. In Western Switzerland, the chemical analysis of illicit drug seizures is centralised in a laboratory hosted by the University of Lausanne. For over 8 years, this laboratory has analysed 5875 cocaine and 2728 heroin specimens, coming from respectively 1138 and 614 seizures operated by police and border guards or customs. Chemical (major and minor alkaloids, purity, cutting agents, chemical class), physical (packaging and appearance) as well as circumstantial (criminal case number, mass of drug seized, date and place of seizure) information are collated in a dedicated database for each specimen. The study capitalises on this extended database and defines several indicators to characterise the structure of drugs markets, to follow-up on their evolution and to compare cocaine and heroin markets. Relational, spatial, temporal and quantitative analyses of data reveal the emergence and importance of distribution networks. They enable to evaluate the cross-jurisdictional character of drug trafficking and the observation time of drug batches, as well as the quantity of drugs entering the market every year. Results highlight the stable nature of drugs markets over the years despite the very dynamic flows of distribution and consumption. This research work illustrates how the systematic analysis of forensic data may elicit knowledge on criminal activities at a strategic level. In combination with information from other sources, such knowledge can help to devise intelligence-based preventive and repressive measures and to discuss the impact of countermeasures.
Resumo:
Cytochrome P450 (CYP) enzymes play a pivotal role in the metabolism of many drugs. Inhibition of CYP enzymes usually increases the plasma concentrations of their substrate drugs and can thus alter the safety and efficacy of these drugs. The metabolism of many widely used nonsteroidal antiinflammatory drugs (NSAIDs) as well as the metabolism of the antidepressant venlafaxine is nown to be catalyzed by CYP enzymes. In the present studies, the effect of CYP inhibition on the armacokinetics and pharmacodynamics of NSAIDs and venlafaxine was studied in clinical trials with healthy volunteers and with a crossover design, by using different antifungal agents as CYP inhibitors. The results of these studies demonstrate that the inhibition of CYP enzymes leads to increased concentrations of NSAIDs. In most cases, the exposure to ibuprofen, diclofenac, etoricoxib, and meloxicam was increased 1.5to 2 fold when they were used concomitantly with antifungal agents. CYP2D6 inhibitor, terbinafine, substantially increased the concentration of parent venlafaxine, whereas the concentration of active moiety of venlafaxine (parent drug plus active metabolite) was only slightly increased. Voriconazole, an inhibitor of the minor metabolic pathway of venlafaxine, produced only minor changes in the pharmacokinetics of venlafaxine. These studies show that an evident increase in the concentrations of NSAIDs may be expected, if they are used concomitantly with CYP inhibitors. However, as NSAIDs are generally well tolerated, use of single doses of NSAIDs concomitantly with CYP inhibitors is not likely to adversely affect patient safety, whereas clinical relevance of longterm concomitant use of NSAIDs with CYP inhibitors needs further investigation. CYP2D6 inhibitors considerably affect the pharmacokinetics of venlafaxine, but the clinical significance of this interaction remains unclear.
Resumo:
This report outlines the discovery, the design and development of new compounds, and, structure-activity relationships for this drug category. Updated approaches to planned syntheses of new worthy ACE-inhibitors are also exploited.
Resumo:
Drug transporting membrane proteins are expressed in various human tissues and blood-tissue barriers, regulating the transfer of drugs, toxins and endogenous compounds into or out of the cells. Various in vitro and animal experiments suggest that P-glycoprotein (P-gp) forms a functional barrier between maternal and fetal blood circulation in the placenta thereby protecting the fetus from exposure to xenobiotics during pregnancy. The multidrug resistance-associated protein 1 (MRP1) is a relatively less studied transporter protein in the human placenta. The aim of this study series was to study the role of placental transporters, apical P-gp and basal MRP1, using saquinavir as a probe drug, and to study transfer of quetiapine and the role of P-gp in its transfer in the dually perfused human placenta/cotyledon. Furthermore, two ABCB1 (encoding P-gp) polymorphisms (c.3435C>T, p.Ile1145Ile and c.2677G>T/A, p.Ala893Ser/Thr) were studied to determine their impact on P-gp protein expression level and on the transfer of the study drugs. Also, the influence of the P-gp protein expression level on the transfer of the study drugs was addressed. Because P-gp and MRP1 are ATP-dependent drug-efflux pumps, it was studied whether exogenous ATP is needed for the function of ATP-dependent transporter in the present experimental model. The present results indicated that the addition of exogenous ATP was not necessary for transporter function in the perfused human placental cotyledon. Saquinavir and quetiapine were both found to cross the human placenta; transplacental transfer (TPTAUC %) for saquinavir was <0.5% and for quetiapine 3.7%. Pharmacologic blocking of P-gp led to disruption of the blood-placental barrier (BPB) and increased the placental transfer of P-gp substrate, saquinavir, into the fetal circulation by 6- to 8-fold. In reversed perfusions P-gp, MRP1 and possibly OATP2B1 had a negligible role in the fetal-to-maternal transfer of saquinavir. The TPTAUC % of saquinavir was about 100-fold greater from the fetal side to the maternal side compared with the maternal-to-fetal transfer. P-gp activity is not likely to modify the placental transfer of quetiapine. Higher P-gp protein expression levels were associated with the variant allele 3435T, but no correlation was found between the TPTAUC % of saquinavir and placental P-gp protein expression. The present results indicate that P-gp activity drastically affects the fetal exposure to saquinavir, and suggest that pharmacological blockade of the P-gp activity during pregnancy may pose an increased risk for adverse fetal outcome. The blockade of P-gp activity could be used in purpose to obtain higher drug concentration to the fetal side, for example, in prevention (to decrease virus transfer to fetal side) or in treating sick fetus.
Resumo:
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (−31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.
Resumo:
This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 d) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater
Resumo:
The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.
Resumo:
This thesis discusses the different possibilities to brand and promote a patented prescription lifestyle drug through different marketing communications practices. This thesis aims in explaining how branding procedures can be built in circumstances, where the legislative environment is strickt and furthermore, the environment consists of both B-to-B and B-to-C market characteristics simultaneously.
Resumo:
The influence of drug concentration, oil phase, and surfactants on the characteristics of dexamethasone-loaded nanocapsules was investigated. The best formulations were obtained at dexamethasone concentrations of 0.25 and 0.50 mg.mL-1 (encapsulation efficiency: 80-90%; mean size: 189-253 nm). The type of oil phase influenced only the stability of dexamethasone-loaded nanocapsules. The association of polysorbate 80 and sorbitan monooleate provided a more stable formulation. Sunflower oil and sorbitan sesquioleate used for the first time as oil phase and surfactant for nanocapsules, respectively, have allowed obtaining suspensions with low mean size and narrow size distribution.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.
Resumo:
Nitrite, which is present in preserved meat and can be produced in the oral cavity by reduction of nitrate taken from vegetables, could react in stomach with nitrosatable drugs, giving genotoxic-carcinogenic N-nitroso compounds (NOC). The mutagenicity of reaction mixtures formed by sodium nitrite and selected sulfa-drugs (sulfathiazole, HST; phtalylsulfathiazole, PhST; complex Co(II)-sulfathiazole, Co(II)-ST) in acidic medium was evaluated using the Salmonella typhimurium reverse mutation assay (Ames test), with TA98 and TA 100 strains. The reactions were carried out at room temperature, with a mole ratio [nitrite]/[sulfa-drug] > 1. The three reaction mixtures showed mutagenic effects in the considered range.
Resumo:
Each day, Earth's finite resources are being depleted for energy, for material goods, for transportation, for housing, and for drugs. As we evolve scientifically and technologically, and as the population of the world rapidly approaches 7 billion and beyond, among the many issues with which we are faced is the continued availability of drugs for future global health care. Medicinal agents are primarily derived from two sources, synthetic and natural, or in some cases, as semi-synthetic compounds, a mixture of the two. For the developed world, efforts have been initiated to make drug production "greener", with milder reagents, shorter reaction times, and more efficient processing, thereby using less energy, and reactions which are more atom efficient, and generate fewer by-products. However, most of the world's population uses plants, in either crude or extract form, for their primary health care. There is relatively little discussion as yet, about the long term effects of the current, non-sustainable harvesting methods for medicinal plants from the wild, which are depleting these critical resources without concurrent initiatives to commercialize their cultivation. To meet future public health care needs, a paradigm shift is required in order to adopt new approaches using contemporary technology which will result in drugs being regarded as a sustainable commodity, irrespective of their source. In this presentation, several approaches to enhancing and sustaining the availability of drugs, both synthetic and natural, will be discussed, including the use of vegetables as chemical reagents, and the deployment of integrated strategies involving information systems, biotechnology, nanotechnology, and detection techniques for the development of medicinal plants with enhanced levels of bioactive agents.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Sensitive and selective spectrophotometric and spectrofluorimetric methods have been developed for determination of some drugs such as Pramipexole, Nebivolol, Carvedilol, and Eletriptan, which commonly contain secondary amino group. The subject methods were developed via derivatization of the secondary amino groups with 7-Chloro-4-Nitrobenzofurazon in borate buffer where a yellow colored reaction product was obtained and measured spectrophotometrically or spectrofluorimetrically. Concentration ranges were found as 2.0 to 250 μg mL-1 and 0.1 to 3.0 μg mL-1, for spectrophotometric and spectrofluorimetric study, respectively. The described methods can be easily applied by the quality control laboratories in routine analyses of these drugs in pharmaceutical preparations.