971 resultados para Pigeon pea
Resumo:
Background The genetic regulation of flower color has been widely studied, notably as a character used by Mendel and his predecessors in the study of inheritance in pea. Methodology/Principal Findings We used the genome sequence of model legumes, together with their known synteny to the pea genome to identify candidate genes for the A and A2 loci in pea. We then used a combination of genetic mapping, fast neutron mutant analysis, allelic diversity, transcript quantification and transient expression complementation studies to confirm the identity of the candidates. Conclusions/Significance We have identified the pea genes A and A2. A is the factor determining anthocyanin pigmentation in pea that was used by Gregor Mendel 150 years ago in his study of inheritance. The A gene encodes a bHLH transcription factor. The white flowered mutant allele most likely used by Mendel is a simple G to A transition in a splice donor site that leads to a mis-spliced mRNA with a premature stop codon, and we have identified a second rare mutant allele. The A2 gene encodes a WD40 protein that is part of an evolutionarily conserved regulatory complex.
Resumo:
Mendel's paper 'Versuche über Pflanzen-Hybriden' is the best known in a series of studies published in the late 18th and 19th centuries that built our understanding of the mechanism of inheritance. Mendel investigated the segregation of seven gene characters of pea (Pisum sativum), of which four have been identified. Here, we review what is known about the molecular nature of these genes, which encode enzymes (R and Le), a biochemical regulator (I) and a transcription factor (A). The mutations are: a transposon insertion (r), an amino acid insertion (i), a splice variant (a) and a missense mutation (le-1). The nature of the three remaining uncharacterized characters (green versus yellow pods, inflated versus constricted pods, and axial versus terminal flowers) is discussed.
Resumo:
A trypsin inhibitor locus (Tri) has been mapped close to Vc-2 on Pisum (pea) linkage group 5 using recombinant inbred lines derived from crosses of genotypes showing qualitative variation in seed trypsin inhibitors. F2 seed populations derived from crosses between lines showing qualitative variation in trypsin inhibitors as well as quantitative variation in inhibitor activity showed an association between the segregation of the structural variation and relative activity levels. Clones complementary to Pisum trypsin inhibitor mRNA were used in hybridization analyses which showed that the segregation of protein polymorphisms reflected directly the segregation of polymorphisms associated with the structural genes.
Resumo:
Introducing nitrogen (N)-fixing legumes into cereal-based crop rotations reduces synthetic fertiliser-N use and may mitigate soil emissions of nitrous oxide (N2O). Current IPCC calculations assume 100% of legume biomass N as the anthropogenic N input and use 1% of this as an emission factor (EF)—the percentage of input N emitted as N2O. However, legumes also utilise soil inorganic N, so legume-fixed N is typically less than 100% of legume biomass N. In two field experiments, we measured soil N2O emissions from a black Vertosol in sub-tropical Australia for 12 months after sowing of chickpea (Cicer arietinum L.), canola (Brassica napus L.), faba bean (Vicia faba L.), and field pea (Pisum sativum L.). Cumulative N2O emissions from N-fertilised canola (624 g N2O-N ha−1) greatly exceeded those from chickpea (127 g N2O-N ha−1) in Experiment 1. Similarly, N2O emitted from canola (385 g N2O-N ha−1) in Experiment 2 was significantly greater than chickpea (166 g N2O-N ha−1), faba bean (166 g N2O-N ha−1) or field pea (135 g N2O-N ha−1). Highest losses from canola were recorded during the growing season, whereas 75% of the annual N2O losses from the legumes occurred post-harvest. Legume N2-fixation provided 37–43% (chickpea), 54% (field pea) and 64% (faba bean) of total plant biomass N. Using only fixed-N inputs, we calculated EFs for chickpea (0.13–0.31%), field pea (0.18%) and faba bean (0.04%) that were significantly less than N-fertilised canola (0.48–0.78%) (P < 0.05), suggesting legume-fixed N is a less emissive form of N input to the soil than fertiliser N. Inputs of legume-fixed N should be more accurately quantified to properly gauge the potential for legumes to mitigate soil N2O emissions. EF’s from legume crops need to be revised and should include a factor for the proportion of the legume’s N derived from the atmosphere.
Resumo:
Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10-8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10-6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
Resumo:
Mounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland’s cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba (L.). Of these treatments, field pea was found to harbour the highest densities of eggs. A partial life table study of the fate of eggs oviposited on field pea and chickpea suggested that large proportions of the eggs laid on field pea suffered mortality due to dislodgment from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an areawide management programme for Helicoverpa spp. is discussed.
Resumo:
The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.
Resumo:
The parasitic weed Orobanche crenata inflicts major damage on faba bean, lentil, pea and other crops in Mediterranean environments. The development of methods to control O. crenata is to a large extent hampered by the complexity of host-parasite systems. Using a model of host-parasite interactions can help to explain and understand this intricacy. This paper reports on the evaluation and application of a model simulating host-parasite competition as affected by environment and management that was implemented in the framework of the Agricultural Production Systems Simulator (APSIM). Model-predicted faba bean and O. crenata growth and development were evaluated against independent data. The APSIM-Fababean and -Parasite modules displayed a good capability to reproduce effects of pedoclimatic conditions, faba bean sowing date and O. crenata infestation on host-parasite competition. The r(2) values throughout exceeded 0.84 (RMSD: 5.36 days) for phenological, 0.85 (RMSD: 223.00 g m(-2)) for host growth and 0.78 (RMSD: 99.82 g m(-2)) for parasite growth parameters. Inaccuracies of simulated faba bean root growth that caused some bias of predicted parasite number and host yield loss may be dealt with by more flexibly simulating vertical root distribution. The model was applied in simulation experiments to determine optimum sowing windows for infected and non-infected faba bean in Mediterranean environments. Simulation results proved realistic and testified to the capability of APSIM to contribute to the development of tactical approaches in parasitic weed control.
Resumo:
Reduced supplies of nitrogen (N) in many soils of southern Queensland that were cropped exhaustively with cereals over many decades have been the focus of much research to avoid declines in profitability and sustainability of farming systems. A 45-month period of mixed grass (purple pigeon grass, Setaria incrassata Stapf; Rhodes grass, Chloris gayana Kunth.) and legume (lucerne, Medicago sativa L.; annual medics, M. scutellata L. Mill. and M. truncatula Gaertn.) pasture was one of several options that were compared at a fertility-depleted Vertosol at Warra, southern Queensland, to improve grain yields or increase grain protein concentration of subsequent wheat crops. Objectives of the study were to measure the productivity of a mixed grass and legume pasture grown over 45 months (cut and removed over 36 months) and its effects on yield and protein concentrations of the following wheat crops. Pasture production (DM t/ha) and aboveground plant N yield (kg/ha) for grass, legume (including a small amount of weeds) and total components of pasture responded linearly to total rainfall over the duration of each of 3 pastures sown in 1986, 1987 and 1988. Averaged over the 3 pastures, each 100 mm of rainfall resulted in 0.52 t/ha of grass, 0.44 t/ha of legume and 0.97 t/ha of total pasture DM, there being little variation between the 3 pastures. Aboveground plant N yield of the 3 pastures ranged from 17.2 to 20.5 kg/ha per 100 mm rainfall. Aboveground legume N in response to total rainfall was similar (10.6 - 13.2 kg/ha. 100 mm rainfall) across the 3 pastures in spite of very different populations of legumes and grasses at establishment. Aboveground grass N yield was 5.2 - 7.0 kg/ha per 100mm rainfall. In most wheat crops following pasture, wheat yields were similar to that of unfertilised wheat except in 1990 and 1994, when grain yields were significantly higher but similar to that for continuous wheat fertilised with 75 kg N/ha. In contrast, grain protein concentrations of most wheat crops following pasture responded positively, being substantially higher than unfertilised wheat but similar to that of wheat fertilised with 75 kg N/ha. Grain protein averaged over all years of assay was increased by 25 - 40% compared with that of unfertilised wheat. Stored water supplies after pasture were < 134mm (< 55% of plant available water capacity); for most assay crops water storages were 67 - 110 mm, an equivalent wet soil depth of only 0.3 - 0.45 m. Thus, the crop assays of pasture benefits were limited by low water supply to wheat crops. Moreover, the severity of common root rot in wheat crop was not reduced by pasture - wheat rotation.
Resumo:
Fifteen years ago subterranean clover (Trifolium subterraneum) and annual medics (Medicago spp.) dominated annual pasture legume sowings in southern Australia, while limited pasture legume options existed for cropping areas of subtropical Australia. Since then a number of sustainability and economic challenges to existing farming systems have emerged, exposing shortcomings in these species and the lack of legume biodiversity. Public breeding institutions have responded to these challenges by developing 58 new annual and short-lived perennial pasture legumes with adaptation to both existing and new farming systems. This has involved commercialisation of new species and overcoming deficiencies in traditional species. Traits incorporated in legumes of Mediterranean Basin origin for the Mediterranean, temperate and southern subtropical climates of Australia include deeper root systems, protection from false breaks (germination-inducing rainfall events followed by death from drought), a range of hardseed levels, acid-soil tolerant root nodule symbioses, tolerance to pests and diseases and provision of lower cost seed through ease of seed harvesting and processing. Ten new species, French serradella (Ornithopus sativus), biserrula (Biserrula pelecinus), sulla (Hedysarum coronarium), gland (Trifolium glanduliferum), arrowleaf (Trifolium vesiculosum), eastern star (Trifolium dasyurum) and crimson (Trifolium incarnatum) clovers and sphere (Medicago sphaerocarpos), button (Medicago orbicularis) and hybrid disc (Medicago tornata x Medicago littoralis) medics have been commercialised. Improved cultivars have also been developed of subterranean (T. subterraneum), balansa (Trifolium michelianum), rose (Trifolium hirtum), Persian (Trifolium resupinatum) and purple (Trifolium purpureum) clovers, burr (Medicago polymorpha), strand (M. littoralis), snail (Medicago scutellata) and barrel (Medicago truncatula) medics and yellow serradella (Ornithopus compressus). New tropical legumes for pasture phases in subtropical cropping areas include butterfly pea (Clitoria ternatea), burgundy bean (Macroptilium bracteatum) and perennial lablab (Lablab purpureus). Other species and cultivars of Mediterranean species are likely to be released soon. The contributions of genetic resources, rhizobiology, pasture ecology and agronomy, plant pathology, entomology, plant chemistry and animal science have been paramount to this success. A farmer survey in Western Australia has shown widespread adoption of the new pasture legumes, while adoption of new tropical legumes has also been high in cropping areas of the subtropics. This trend is likely to increase due to the increasing cost of inorganic nitrogen, the need to combat herbicide-resistant crop weeds and improved livestock prices. Mixtures of these legumes allows for more robust pastures buffered against variable seasons, soils, pests, diseases and management decisions. This paper discusses development of the new pasture legumes, their potential use and deficiencies in the current suite. 'Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
Pseudocercospora macadamiae causes husk spot of macadamia. Husk spot control would be improved by verifying the stages in fruit development susceptible to infection, and determine some of the climatic conditions likely to lead to high disease pressure periods in the field. Our results showed that the percent conidia germination and growth of germ tubes and mycelia of P. macadamiae were greatest at 26 degrees C, with better conidia germination associated with high relative humidity and free water. The exposure of match-head-sized and pea-sized fruit stages to natural P. macadamiae inoculum in the field led to 2 5-fold increases in husk spot incidence, and up to 8.5-fold increases in premature abscission, compared with unexposed fruit. Exposure of fruit stages later than match-head-sized and pea-sized fruit generally caused no further increases in disease incidence or premature abscission. Climatic conditions were found to have a strong influence on the behaviour of P. macadamiae, the host, oil accumulation, and the subsequent impact of husk spot on premature abscission. Our findings suggest that fungicide application should target fruit at the match-head-sized stage of development in order to best reduce yield losses, particularly in seasons where oil accumulation in fruit is prolonged and climatic conditions are optimal for P. macadamiae.
Resumo:
Probiotic supplements are single or mixed strain cultures of live microorganisms that benefit the host by improving the properties of the indigenous microflora (Seo et al 2010). In a pilot study at the University of Queensland, Norton et al (2008) found that Bacillus amyloliquefaciens Strain H57 (H57), primarily investigated as an inoculum to make high-quality hay, improved feed intake and nitrogen utilisation over several weeks in pregnant ewes. The purpose of the following study was to further challenge the potential of H57 -to show it survives the steam-pelleting process, and that it improves the performance of ewes fed pellets based on an agro-industrial by-product with a reputation for poor palatability, palm kernel meal (PKM), (McNeill 2013). Thirty-two first-parity White Dorper ewes (day 37 of pregnancy, mean liveweight = 47.3 kg, mean age = 15 months) were inducted into individual pens in the animal house at the University of Queensland, Gatton. They were adjusted onto PKM-based pellets (g/kg drymatter (DM): PKM, 408; sorghum, 430; chick pea hulls, 103; minerals and vitamins; Crude protein, 128; ME: 11.1MJ/kg DM) until day 89 of pregnancy and thereafter fed a predominately pelleted diet incorporating with or without H57 spores (10 9 colony forming units (cfu)/kg pellet, as fed), plus 100g/ewe/day oaten chaff, until day 7 of lactation. From day 7 to 20 of lactation the pelleted component of the diet was steadily reduced to be replaced by a 50:50 mix of lucerne: oaten chaff, fed ad libitum, plus 100g/ewe/day of ground sorghum grain with or without H57 (10 9 cfu/ewe/day). The period of adjustment in pregnancy (day 37-89) extended beyond expectations due to some evidence of mild ruminal acidosis after some initially high intakes that were followed by low intakes. During that time the diet was modified, in an attempt to improve palatability, by the addition of oaten chaff and the removal of an acidifying agent (NH4Cl) that was added initially to reduce the risk of urinary calculi. Eight ewes were removed due to inappetence, leaving 24 ewes to start the trial at day 90 of pregnancy. From day 90 of pregnancy until day 63 of lactation, liveweights of the ewes and their lambs were determined weekly and at parturition. Feed intakes of the ewes were determined weekly. Once lambing began, 1 ewe was removed as it gave birth to twin lambs (whereas the rest gave birth to a single lamb), 4 due to the loss of their lambs (2 to dystocia), and 1 due to copper toxicity. The PKM pellets were suspected to be the cause of the copper toxicity and so were removed in early lactation. Hence, the final statistical analysis using STATISTICA 8 (Repeated measures ANOVA for feed intake, One-way ANOVA for liveweight change and birth weight) was completed on 23 ewes for the pregnancy period (n = 11 fed H57; n = 12 control), and 18 ewes or lambs for the lactation period (n = 8 fed H57; n = 10 control). From day 90 of pregnancy until parturition the H57 supplemented ewes ate 17 more DM (g/day: 1041 vs 889, sed = 42.4, P = 0.04) and gained more liveweight (g/day: 193 vs 24.0, sed = 25.4, P = 0.0002), but produced lambs with a similar birthweight (kg: 4.18 vs 3.99, sed = 0.19, P = 0.54). Over the 63 days of lactation the H57 ewes ate similar amounts of DM but grew slower than the control ewes (g/day: 1.5 vs 97.0, sed = 21.7, P = 0.012). The lambs of the H57 ewes grew faster than those of the control ewes for the first 21 days of lactation (g/day: 356 vs 265, sed = 16.5, P = 0.006). These data support the findings of Norton et al (2008) and Kritas et al (2006) that certain Bacillus spp. supplements can improve the performance of pregnant and lactating ewes. In the current study we particularly highlighted the capacity of H57 to stimulate immature ewes to continue to grow maternal tissue through pregnancy, possibly through an enhanced appetite, which appeared then to stimulate a greater capacity to partition nutrients to their lambs through milk, at least for the first few weeks of lactation, a critical time for optimising lamb survival. To conclude, H57 can survive the steam pelleting process to improve feed intake and maternal liveweight gain in late pregnancy, and performance in early lactation, of first-parity ewes fed a diet based on PKM.
Resumo:
Parthenium hysterophorus L., (Asteraceae) commonly known as parthenium weed, is a highly invasive plant that has become a problematic weed of pasture lands in Australia and many other countries around the world. For the management of this weed, an integrated approach comprising biological control and plant competition strategies was tested in southern central Queensland. Two competitive pasture plant species (butterfly pea and buffel grass), selected for their high competitive ability, worked successfully with the biological control agent (Epiblema strenuana Walker) to synergistically reduce the biomass of parthenium weed, by between 62 and 69%. In the presence of biological control agent, the corresponding biomass of competitive plants, butterfly pea and buffel grass increased in comparison to when the biological control agent had been excluded, by 15 and 35%, respectively. This suggests that biological control and competitive plants can complement one another to bring about improved management of parthenium weed in Australia. Further, this approach may be adopted in countries where some of the biological control agents are already present including South Africa, Ethiopia, India, Pakistan and Nepal.
Resumo:
2-Phenethyl alcohol (2-PEA) and 2-phenyllactic acid (2-PLA) were isolated from the culture filtrates of Candida species grown in media containing peptone or phenylalanine as nitrogen source. These compounds were characterized by comparing their UV, IR, and NMR spectral properties with authentic samples. Candida species differed markedly in their production of 2-PEA and 2-PLA. Experiments using [14C]-phenylalanine indicated that both 2-PEA and 2-PLA are synthesised from L-phenylalanine. A pathway for the biosynthesis of 2-PEA from L-phenylalanine has been proposed.