Soil N2O emissions under N2-fixing legumes and N-fertilised canola: A reappraisal of emissions factor calculations


Autoria(s): Schwenke, Graeme D.; Herridge, David F.; Scheer, Clemens; Rowlings, David W.; Haigh, Bruce M.; McMullen, K. Guy
Data(s)

01/04/2015

Resumo

Introducing nitrogen (N)-fixing legumes into cereal-based crop rotations reduces synthetic fertiliser-N use and may mitigate soil emissions of nitrous oxide (N2O). Current IPCC calculations assume 100% of legume biomass N as the anthropogenic N input and use 1% of this as an emission factor (EF)—the percentage of input N emitted as N2O. However, legumes also utilise soil inorganic N, so legume-fixed N is typically less than 100% of legume biomass N. In two field experiments, we measured soil N2O emissions from a black Vertosol in sub-tropical Australia for 12 months after sowing of chickpea (Cicer arietinum L.), canola (Brassica napus L.), faba bean (Vicia faba L.), and field pea (Pisum sativum L.). Cumulative N2O emissions from N-fertilised canola (624 g N2O-N ha−1) greatly exceeded those from chickpea (127 g N2O-N ha−1) in Experiment 1. Similarly, N2O emitted from canola (385 g N2O-N ha−1) in Experiment 2 was significantly greater than chickpea (166 g N2O-N ha−1), faba bean (166 g N2O-N ha−1) or field pea (135 g N2O-N ha−1). Highest losses from canola were recorded during the growing season, whereas 75% of the annual N2O losses from the legumes occurred post-harvest. Legume N2-fixation provided 37–43% (chickpea), 54% (field pea) and 64% (faba bean) of total plant biomass N. Using only fixed-N inputs, we calculated EFs for chickpea (0.13–0.31%), field pea (0.18%) and faba bean (0.04%) that were significantly less than N-fertilised canola (0.48–0.78%) (P < 0.05), suggesting legume-fixed N is a less emissive form of N input to the soil than fertiliser N. Inputs of legume-fixed N should be more accurately quantified to properly gauge the potential for legumes to mitigate soil N2O emissions. EF’s from legume crops need to be revised and should include a factor for the proportion of the legume’s N derived from the atmosphere.

Identificador

http://eprints.qut.edu.au/86440/

Publicador

Elsevier BV

Relação

DOI:10.1016/j.agee.2015.01.017

Schwenke, Graeme D., Herridge, David F., Scheer, Clemens, Rowlings, David W., Haigh, Bruce M., & McMullen, K. Guy (2015) Soil N2O emissions under N2-fixing legumes and N-fertilised canola: A reappraisal of emissions factor calculations. Agriculture, Ecosystems & Environment, 202, pp. 232-242.

Direitos

© Copyright 2015 Elsevier B.V.

Fonte

School of Earth, Environmental & Biological Sciences; Institute for Future Environments; Science & Engineering Faculty

Palavras-Chave #Brassica napus #Cicer arietinum #Vicia faba #Pisum sativum #N2O #Emission factor
Tipo

Journal Article