917 resultados para Pattern-recognition Methods
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of nontextured objets or objets for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance
Resumo:
The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.
Resumo:
En aquest projecte es pretén utilitzar mètodes coneguts com ara Viola&Jones (detecció) i EigenFaces (reconeixement) per a detectar i reconèixer cares dintre d’imatges de vídeo. Per a aconseguir aquesta tasca cal partir d’un conjunt de dades d’entrenament per a cada un dels mètodes (base de dades formada per imatges i anotacions manuals). A partir d’aquí, l’aplicació, ha de ser capaç de detectar cares en noves imatges i reconèixer-les (identificar de quina cara es tracta)
Resumo:
Dissenyar, implementar i testejar un sistema per classificar imatges: disseny d’un sistema que primer aprèn com són les imatges d’una classe a partir d’un conjunt d’imatges d’entrenament i després és capaç de classificar noves imatges assignant-les-hi l’ etiqueta corresponent a una de les classes “apreses”. Concretament s’analitzen caràtules de cd-roms, les quals s’han de reconèixer per després reproduir automàticament la música del seu àlbum associat
Resumo:
Desenvolupament una aplicació informàtica basada en un sistema de visió per computador, la qual permeti donar una resposta en forma d'informació a partir d'una query d'una imatge que conté una escena o objecte en concret de manera que permeti reconèixer els objectes que apareixen en una imatge per llavors donar informació referent al contingut de la imatge a l’usuari que ha fet la consulta. Resumint, es tracta d’analitzar, dissenyar i construir un sistemade visió per computador capaç de reconèixer objectes d’interès en imatges
Resumo:
Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell-mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN-related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.
Resumo:
OBJECTIVE Delusional disorder has been traditionally considered a psychotic syndrome that does not evolve to cognitive deterioration. However, to date, very little empirical research has been done to explore cognitive executive components and memory processes in Delusional Disorder patients. This study will investigate whether patients with delusional disorder are intact in both executive function components (such as flexibility, impulsivity and updating components) and memory processes (such as immediate, short term and long term recall, learning and recognition). METHODS A large sample of patients with delusional disorder (n = 86) and a group of healthy controls (n = 343) were compared with regard to their performance in a broad battery of neuropsychological tests including Trail Making Test, Wisconsin Card Sorting Test, Colour-Word Stroop Test, and Complutense Verbal Learning Test (TAVEC). RESULTS When compared to controls, cases of delusional disorder showed a significantly poorer performance in most cognitive tests. Thus, we demonstrate deficits in flexibility, impulsivity and updating components of executive functions as well as in memory processes. These findings held significant after taking into account sex, age, educational level and premorbid IQ. CONCLUSIONS Our results do not support the traditional notion of patients with delusional disorder being cognitively intact.
Resumo:
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Resumo:
In the first part of this research, three stages were stated for a program to increase the information extracted from ink evidence and maximise its usefulness to the criminal and civil justice system. These stages are (a) develop a standard methodology for analysing ink samples by high-performance thin layer chromatography (HPTLC) in reproducible way, when ink samples are analysed at different time, locations and by different examiners; (b) compare automatically and objectively ink samples; and (c) define and evaluate theoretical framework for the use of ink evidence in forensic context. This report focuses on the second of the three stages. Using the calibration and acquisition process described in the previous report, mathematical algorithms are proposed to automatically and objectively compare ink samples. The performances of these algorithms are systematically studied for various chemical and forensic conditions using standard performance tests commonly used in biometrics studies. The results show that different algorithms are best suited for different tasks. Finally, this report demonstrates how modern analytical and computer technology can be used in the field of ink examination and how tools developed and successfully applied in other fields of forensic science can help maximising its impact within the field of questioned documents.
Resumo:
This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
Monitoring of posture allocations and activities enables accurate estimation of energy expenditure and may aid in obesity prevention and treatment. At present, accurate devices rely on multiple sensors distributed on the body and thus may be too obtrusive for everyday use. This paper presents a novel wearable sensor, which is capable of very accurate recognition of common postures and activities. The patterns of heel acceleration and plantar pressure uniquely characterize postures and typical activities while requiring minimal preprocessing and no feature extraction. The shoe sensor was tested in nine adults performing sitting and standing postures and while walking, running, stair ascent/descent and cycling. Support vector machines (SVMs) were used for classification. A fourfold validation of a six-class subject-independent group model showed 95.2% average accuracy of posture/activity classification on full sensor set and over 98% on optimized sensor set. Using a combination of acceleration/pressure also enabled a pronounced reduction of the sampling frequency (25 to 1 Hz) without significant loss of accuracy (98% versus 93%). Subjects had shoe sizes (US) M9.5-11 and W7-9 and body mass index from 18.1 to 39.4 kg/m2 and thus suggesting that the device can be used by individuals with varying anthropometric characteristics.
Resumo:
Fungal infections represent a serious threat, particularly in immunocompromised patients. Interleukin-1beta (IL-1beta) is a key pro-inflammatory factor in innate antifungal immunity. The mechanism by which the mammalian immune system regulates IL-1beta production after fungal recognition is unclear. Two signals are generally required for IL-1beta production: an NF-kappaB-dependent signal that induces the synthesis of pro-IL-1beta (p35), and a second signal that triggers proteolytic pro-IL-1beta processing to produce bioactive IL-1beta (p17) via Caspase-1-containing multiprotein complexes called inflammasomes. Here we demonstrate that the tyrosine kinase Syk, operating downstream of several immunoreceptor tyrosine-based activation motif (ITAM)-coupled fungal pattern recognition receptors, controls both pro-IL-1beta synthesis and inflammasome activation after cell stimulation with Candida albicans. Whereas Syk signalling for pro-IL-1beta synthesis selectively uses the Card9 pathway, inflammasome activation by the fungus involves reactive oxygen species production and potassium efflux. Genetic deletion or pharmalogical inhibition of Syk selectively abrogated inflammasome activation by C. albicans but not by inflammasome activators such as Salmonella typhimurium or the bacterial toxin nigericin. Nlrp3 (also known as NALP3) was identified as the critical NOD-like receptor family member that transduces the fungal recognition signal to the inflammasome adaptor Asc (Pycard) for Caspase-1 (Casp1) activation and pro-IL-1beta processing. Consistent with an essential role for Nlrp3 inflammasomes in antifungal immunity, we show that Nlrp3-deficient mice are hypersusceptible to Candida albicans infection. Thus, our results demonstrate the molecular basis for IL-1beta production after fungal infection and identify a crucial function for the Nlrp3 inflammasome in mammalian host defence in vivo.
Resumo:
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.