930 resultados para POTASSIUM CHANNELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the response to phosphorus (P) and potassium (K) fertilization and to establish the critical levels of P and K in the soil and in the plant tissue in pear trees. Two experiments were conducted in São Joaquim (SC), Brazil. In experiment 1, the plants received annually the application of increasing rates of phosphate fertilizer (0, 40, 80, 120 and 160 kg P2O5 ha-1), while in experiment 2, increasing rates of potassium fertilizer (0, 40, 80, 120 and 160 kg K2O ha-1) were applied annually. In the two experiments, soil was collected annually from the 0-10, 10-20 and 0-20 cm layers, and the available P (experiment 1) and exchangeable K (experiment 2) content was analyzed. Whole leaves were collected annually, which were subjected to analysis of total P (experiment 1) and total K (experiment 2) content. The number and weight of the fruits per plant and fruit yield were evaluated. Application of P on the soil planted with pear trees increased the nutrient content in the soil and, in most crop seasons, in the whole leaf, but it did not affect the yield components and fruit yield. The application of K on the soil with pear trees increased the nutrient content in the soil and, in most of the crop seasons, in the whole leaf, but the potassium content in the whole leaf decreased in the crop season with greater fruit yield. The yield components and fruit yield were not affected by K fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cirrhosis is a frequent and severe disease, complicated by renal sodium retention leading to ascites and oedema. A better understanding of the complex mechanisms responsible for renal sodium handling could improve clinical management of sodium retention. Our aim was to determine the importance of the amiloride-sensitive epithelial sodium channel (ENaC) in collecting ducts in compensate and decompensate cirrhosis. Bile duct ligation was performed in control mice (CTL) and collecting duct-specific αENaC knockout (KO) mice, and ascites development, aldosterone plasma concentration, urinary sodium/potassium ratio and sodium transporter expression were compared. Disruption of ENaC in collecting ducts (CDs) did not alter ascites development, urinary sodium/potassium ratio, plasma aldosterone concentrations or Na,K-ATPase abundance in CCDs. Total αENaC abundance in whole kidney increased in cirrhotic mice of both genotypes and cleaved forms of α and γ ENaC increased only in ascitic mice of both genotypes. The sodium chloride cotransporter (NCC) abundance was lower in non-ascitic KO, compared to non-ascitic CTL, and increased when ascites appeared. In ascitic mice, the lack of αENaC in CDs induced an upregulation of total ENaC and NCC and correlated with the cleavage of ENaC subunits. This revealed compensatory mechanisms which could also take place when treating the patients with diuretics. These compensatory mechanisms should be considered for future development of therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropomorphic model observers are mathe- matical algorithms which are applied to images with the ultimate goal of predicting human signal detection and classification accuracy across varieties of backgrounds, image acquisitions and display conditions. A limitation of current channelized model observers is their inability to handle irregularly-shaped signals, which are common in clinical images, without a high number of directional channels. Here, we derive a new linear model observer based on convolution channels which we refer to as the "Filtered Channel observer" (FCO), as an extension of the channelized Hotelling observer (CHO) and the nonprewhitening with an eye filter (NPWE) observer. In analogy to the CHO, this linear model observer can take the form of a single template with an external noise term. To compare with human observers, we tested signals with irregular and asymmetrical shapes spanning the size of lesions down to those of microcalfications in 4-AFC breast tomosynthesis detection tasks, with three different contrasts for each case. Whereas humans uniformly outperformed conventional CHOs, the FCO observer outperformed humans for every signal with only one exception. Additive internal noise in the models allowed us to degrade model performance and match human performance. We could not match all the human performances with a model with a single internal noise component for all signal shape, size and contrast conditions. This suggests that either the internal noise might vary across signals or that the model cannot entirely capture the human detection strategy. However, the FCO model offers an efficient way to apprehend human observer performance for a non-symmetric signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans le néphron distal sensible à l'aldostérone, le récepteur aux minéralocorticoïdes (RM) et le récepteur aux glucocorticoids (RG) sont exprimés et peuvent être liés et activés par l'aldostérone et le Cortisol, respectivement. La réabsorption rénale de sodium est principalement contrôlée par le RM. Cependant, des modèles expérimentaux in vitro et in vivo suggèrent que le RG pourrait également jouer un rôle dans le transport rénal du sodium. Afin d'étudier l'implication du RG et/ou du RM exprimés dans les cellules épithéliales adultes dans le transport rénal du sodium, nous avons généré deux modèles de souris, dans lesquelles l'expression du RG (Nr3c1Pax8/LC1) ou du RM (Nr3c2Pax8/LC1) peut être abolie de manière inductible et cela spécifiquement dans les tubules rénaux. Les souris déficientes pour le gène du RM survivent mais développent un phénotype sévère de PHA-1, caractérisé par un retard de croissance, une augmentation des niveaux urinaires de Na+, une diminution de la concentration du Na+ dans le plasma, une hyperkaliémie et une augmentation des niveaux d'aldostérone plasmatique. Ce phénotype empire et devient létal lorsque les souris sont nourries avec une diète déficiente en sodium. Les niveaux d'expression en protéine de NCC, de la forme phosphorylée de NCC et de aENaC sont diminués, alors que l'expression en ARN messager et en protéine du RG est augmentée. Une diète riche en Na+ et pauvre en K+ ne corrige pas la concentration élevée d'aldostérone dans le plasma pour la ramener à des niveaux conformes, mais est suffisante pour corriger la perte de poids et les niveaux anormaux des électrolytes dans le plasma et l'urine. -- In the aldosterone-sensitive distal nephron, both the mineralocorticoid (MR) and the glucocorticoid (GR) receptor are expressed. They can be bound and activated by aldosterone and Cortisol, respectively. Renal Na+ reabsorption is mainly controlled by MR. However, in vitro and in vivo experimental models suggest that GR may play a role in renal Na+ transport. Therefore, to investigate the implication of MR and/or GR in adult epithelial cells in renal sodium transport, we generated inducible renal tubule- specific MR (Nr3c2Pax8/LC1) and GR (Nr3c1Pax8/LC1) knockout mice. MR-deficient mice survived but developed a severe PHA-1 phenotype with failure to thrive, higher urinary Na+, decreased plasma Na+ levels, hyperkalemia and higher levels of plasma aldosterone. This phenotype further worsened and became lethal under a sodium-deficient diet. NCC protein expression and its phosphorylated form, as well as aENaC protein level were downregulated, whereas the mRNA and protein expression of GR was increased. A diet rich in Na+and low in K+ did not normalize plasma aldosterone to control levels, but was sufficient to restore body weight, plasma and urinary electrolytes. Upon switch to a Na+-deficient diet, GR-mutant mice exhibited transient increased urinary Na+ and decreased K+ levels, with transitory higher plasma K+ concentration preceded by a significant increase in plasma aldosterone levels within the 12 hours following diet switch. We found no difference in urinary aldosterone levels, plasma Na+ concentration and plasma corticosterone levels. Moreover, NHE3, NKCC2, NCC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work analyzed the effect of the temperature and type of salt on the phase equilibrium of aqueous two-phase systems (ATPS) formed by poly (ethylene glycol) (PEG) 1500 + potassium phosphate, from (278.15 to 318.15) K, and PEG 1500 + sodium citrate, from (278.15 to 298.15) K. The rise of the temperature normally increased the slope of the tie line (STL). With respect to the influence of the type of salt, sodium citrate showed better capability to induce phase separation, when compared to potassium phosphate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the development and validation of a dissolution test for 50 mg losartan potassium capsules using HPLC and UV spectrophotometry. A 2(4) full factorial design was carried out to optimize dissolution conditions and potassium phosphate buffer, pH 6.8 as dissolution medium, basket as apparatus at the stirring speed of 50 rpm and time of 30 min were considered adequate. Both dissolution procedure and analytical methods were validated and a statistical analysis showed that there are no significant differences between HPLC and spectrophotometry. Since there is no official monograph, this dissolution test could be applied for quality control routine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT We report on the basic properties of zeolite NaY and potassium supported on NaY (K/NaY) assessed by pyrrole-TPD and MBOH transformation. Pyrrole-TPD revealed that impregnation of zeolite NaY with potassium promoted additional adsorption sites for pyrrole compared to parent zeolite. For zeolite with various potassium loadings, pyrrole adsorbed on K/NaY decreased with increased potassium loading. Reduction in pyrrole adsorption could be due to potassium hindering intrinsic basic sites (lattice oxygen), to oxide of potassium occluding in zeolite cavities restricting access for pyrrole, or to K2O reacting with pyrrole to form nondesorbed pyrrolate anions. On MBOH transformation, potassium almost completely suppressed NaY acid sites while K/NaY basicity increased with potassium loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice husk silica (RHS) and NaY were used as supports for potassium (K) prepared from acetate buffer (B) and acetate (A) solutions. K loading did not destroy the NaY structure, but it caused a decrease in the surface area; the K species resided in micropores and on the external surface. In contrast, K loading resulted in the collapse and a decrease in the surface area of RHS. It was found that 12K/NaY-B was the most active catalyst for the transesterification of Jatropha seed oil. The minimum K content in K/NaY-B that provided complete conversion of the Jatropha seed oil was 11 wt%, and the biodiesel yield was 77.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) was used for determination of sodium and potassium concentrations in diet and non-diet soft drinks. Higher sodium concentrations were found in the diet samples due to the utilization of sodium salts of cyclamate and saccharine as sweeteners. The CE-C4D method can be used by food industries and health regulatory agencies for monitoring sodium and potassium content, not only in soft drink but in many others food products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical control of the fungus Didymella bryoniae, the causal agent of the disease gummy stem blight in melon, is frequently inefficient; thus, alternatives such as grafting and nutrition must be studied. Rootstocks and potassium levels were tested aimed at controlling this disease in net melon under protected environment. The melon hybrid 'Bônus II', ungrafted and grafted onto 'Dinero' melon and 'Strong Tosa' pumpkin rootstocks, was cultivated and inoculated by using the toothpick insertion method with 7-mm mycelial disks from the isolate D. bryoniae Dbr 37; for control, only toothpick insertion was used. The plants were subjected to the following potassium levels: 0, 62.5, 125, 187.5, 250 mg L-1. Grafted 'Bônus II' melon plants were resistant to the fungus, whereas ungrafted ones were susceptible. The adopted potassium levels did not influence the stem lesion size or the survival of plants.