984 resultados para Organic Load
Resumo:
The supreme court of Western Australia handed down a landmark decision yesterday, on genetically modified crop liability. The ruling in Marsh v Baxter is an enormous win for the agricultural biotechnology industry, and has disappointed organic farmers and their advocates.
Resumo:
Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follows a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids, is an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analysed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (Turbidity), organic matter (TOC, DOC, TN and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8% organic material and fed with tapwater with different antecedent dry days (0 – 40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 – 150 minutes and were tested for Total Organic Carbon, Dissolved Organic Carbon, Total Nitrogen, Total Kjeldhal Nitrogen and Turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 minutes while the other phase was observed across subsequent events that related to the age of filter.
Resumo:
Recent research on hollow flange beams has led to the development of an innovative rectangular hollow flange channel beam (RHFCB) for use in floor systems. The new RHFCB is a mono-symmetric structural section made by intermittently rivet fastening two torsionally rigid closed rectangular hollow flanges to a web plate element, which allows section optimisation by selecting appropriate combinations of web and flange widths and thicknesses. However, the current design rules for cold-formed steel sections are not directly applicable to rivet fastened RHFCBs. To date, no investigation has been conducted on their web crippling behaviour and strengths. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of rivet fastened RHFCBs under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. It showed that RHFCBs failed by web crippling, flange crushing and their combinations. Comparison of ultimate web crippling capacities with the predictions from the design equations in AS/NZS 4600 and AISI S100 showed that the current design equations are unconservative for rivet fastened RHFCB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of rivet fastened RHFCBs. These equations can also be used to predict the capacities of RHFCBs subject to combined web crippling and flange crushing conservatively. However, new capacity equations were proposed in the case of flange crushing failures that occurred in thinner flanges with smaller bearing lengths. This paper presents the details of this web crippling experimental study of RHFCB sections and the results.
Resumo:
This work describes the fabrication of nanostructured copper electrodes using a simple potential cycling protocol that involves oxidation and reduction of the surface in an alkaline solution. It was found that the inclusion of additives, such as benzyl alcohol and phenylacetic acid, has a profound effect on the surface oxidation process and the subsequent reduction of these oxides. This results in not only a morphology change, but also affects the electrocatalytic performance of the electrode for the reduction of nitrate ions. In all cases, the electrocatalytic performance of the restructured electrodes was significantly enhanced compared with the unmodified electrode. The most promising material was formed when phenylacetic acid was used as the additive. In addition, the reduction of residual oxides on the surface after the modification procedure to expose freshly active reaction sites on the surface before nitrate reduction was found to be a significant factor in dictating the overall electrocatalytic activity. It is envisaged that this approach offers an interesting way to fabricate other nanostructured electrode surfaces.
Resumo:
Light gauge Steel Frame (LSF) walls are extensively used in the building industry due to the many advantages they provide over other wall systems. Although LSF walls have been used widely, fire design of LSF walls is based on approximate prescriptive methods based on limited fire tests. Also these fire tests were conducted using the standard fire curve [1] and the applicability of available design rules to realistic design fire curves has not been verified. This paper investigates the accuracy of existing fire design rules in the current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [2] based on Eurocode 3 Part 1.3 [3] and AS/NZS 4600 [4] for standard fire exposure [1] were investigated in detail to determine their applicability to predict the axial compression strengths and fire resistance ratings of LSF walls exposed to realistic design fire curves. This paper also presents the fire performance results of LSF walls exposed to a range of realistic fire curves obtained using a finite element analysis based parametric study. The results from the parametric study were used to develop a simplified design method based on the critical hot flange temperature to predict the fire resistance ratings of LSF walls exposed to realistic fire curves. Finally, the stud failure times (fire resistance rating) obtained from the fire design rules and the simplified design method were compared with parametric study results for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic fire curves.
Resumo:
We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.
Resumo:
Organic solar cells show great promise as an economically and environmentally friendly technology to utilize solar energy because of their simple fabrication processes and minimal material usage. However, new innovations and breakthroughs are needed for organic solar cell technology to become competitive in the future. This article reviews research efforts and accomplishments focusing on three issues: power conversion efficiency, device stability and processability for mass production, followed by an outlook for optimizing OSC performance through device engineering and new architecture designs to realize next generation organic solar cells.
Resumo:
We report a new organic photovoltaics (OPV) design, a wrapped OPV, which can circumvent both challenges of short exciton diffusion length [1], and low charge carrier mobility [2] of organic semiconductors by orienting the OPV vertically, to capture; manage; guide and use all incident photons and therefore, generate higher current. Resonant light, on being transmitted into a wrapped OPV, makes multiple passes through the photoactive layer and is absorbed completely, thus achieving benefits of thick photoactive layer while maintaining its ultra-thin thickness requirement. The current density generated from a wrapped OPV is twice than that generated by a similar OPV with flat orientation.
Resumo:
High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.
Resumo:
Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out-coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out-coupling from the top-emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out-coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.
Resumo:
We initially look at the changing energy environment and how that can have a dramatic change on the potential of alternative energies, in particular those of organic photovoltaicvs (OPV) cells. In looking at OPV's we also address the aspects of where we are with the current art and why we may not be getting the best from our materials. In doing so, we propose the idea of changing how we build organic photovoltaics by addressing the best method to contain light within the devices. Our initial effort is in addressing how these microscale optical concentrators work in the form of optical fibers in terms of absorption. We have derived a mathematical method which takes account of the input angle of light to achieve optimum absorption. However, in doing so we also address the complex issue how the changing refractive indices in a multilayer device can alter how we input the light. We have found that by knowing the materials refractive index our model takes into account the incident plane, meridonal plane, cross sectional are and path length to ensure optical angular input. Secondly, we also address the practicalities of making such vertical structures the greater issue of changing light intensity incident on a solar cell and how that aspects alters how we view the performance of organic solar cells.
Resumo:
Optical transmittance and conductivity for thin metallic films, such as Au, are two inversely related and extremely important parameters for its application in organic photovoltaics as the front electrode. We report our findings on how these parameters have been optimized to attain maximum possible efficiencies by fabricating organic solar cells with thin Au film anodes of differing optical transmittances and consequently due to scaling at the nanolevel, varying electrical conductivities. There was an extraordinary improvement in the overall solar cell efficiency (to the order of 49%) when the Au thin film transmittance was increased from 38% to 54%. Surface morphologies of these thin films also have an effect on the critical parameters including, Voc, Jsc and FF.
Resumo:
Flexible multilayer electrodes that combine high transparency, high conductivity, and efficient charge extraction have been deposited, characterised and used as the anode in organic solar cells. The anode consists of an AZO/Ag/AZO stack plus a very thin oxide interlayer whose ionization potential is fine-tuned by manipulating its gap state density to optimise charge transfer with the bulk heterojunction active layer consisting of poly(n-3- hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:BC61BM). The deposition method for the stack was compatible with the low temperatures required for polymer substrates. Optimisation of the electrode stack was achieved by modelling the optical and electrical properties of the device and a power conversion efficiency of 2.9% under AM1.5 illumination compared to 3.0% with an ITO-only anode and 3.5% for an ITO:PEDOT electrode. Dark I-V reverse bias characteristics indicate very low densities of occupied buffer states close to the HOMO level of the hole conductor, despite observed ionization potential being high enough. Their elimination should raise efficiency to that with ITO:PEDOT.
Resumo:
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.