439 resultados para Ontologies
Resumo:
The sharing of product and process information plays a central role in coordinating supply chains operations and is a key driver for their success. "Linked pedigrees" - linked datasets, that encapsulate event based traceability information of artifacts as they move along the supply chain, provide a scalable mechanism to record and facilitate the sharing of track and trace knowledge among supply chain partners. In this paper we present "OntoPedigree" a content ontology design pattern for the representation of linked pedigrees, that can be specialised and extended to define domain specific traceability ontologies. Events captured within the pedigrees are specified using EPCIS - a GS1 standard for the specification of traceability information within and across enterprises, while certification information is described using PROV - a vocabulary for modelling provenance of resources. We exemplify the utility of OntoPedigree in linked pedigrees generated for supply chains within the perishable goods and pharmaceuticals sectors.
Resumo:
A személyazonosság-menedzsment napjaink fontos kutatási területe mind elméleti, mind gyakorlati szempontból. A szakterületen megvalósuló együttműködés, elektronikus tudásáramoltatás és csere hosszú távon csak úgy képzelhető el, hogy az azonos módon történő értelmezést automatikus eszközök támogatják. A szerző cikkében azokat a kutatási tevékenységeket foglalja össze, amelyeket - felhasználva a tudásmenedzsment, a mesterséges intelligencia és az információtechnológia eszközeit - a személyazonosság-menedzsment terület fogalmi leképezésére, leírására használt fel. Kutatási célja olyan közös fogalmi bázis kialakítása volt személyazonosság-menedzsment területre, amely lehetővé teszi az őt körülvevő multidimenzionális környezet kezelését. A kutatás kapcsolódik a GUIDE kutatási projekthez is, amelynek a szerző résztvevője. ______________ Identity management is an important research field from theoretical and practical aspects as well. The task itself is not new, identification and authentication was necessary always in public administration and business life. Information Society offers new services for citizens, which dramatically change the way of administration and results additional risks and opportunities. The goal of the demonstrated research was to formulate a common basis for the identity management domain in order to support the management of the surrounding multidimensional environment. There is a need for capturing, mapping, processing knowledge concerning identity management in order to support reusability, interoperability; to help common sharing and understanding the domain and to avoid inconsistency. The paper summarizes research activities for the identification, conceptualisation and representation of domain knowledge related to identity management, using the results of knowledge management, artificial intelligence and information technology. I utilized the experiences of Guide project, in which I participate. The paper demonstrates, that domain ontologies could offer a proper solution for identity management domain conceptualisation.
Resumo:
Competition between Higher Education Institutions is increasing at an alarming rate, while changes of the surrounding environment and demands of labour market are frequent and substantial. Universities must meet the requirements of both the national and European legislation environment. The Bologna Declaration aims at providing guidelines and solutions for these problems and challenges of European Higher Education. One of its main goals is the introduction of a common framework of transparent and comparable degrees that ensures the recognition of knowledge and qualifications of citizens all across the European Union. This paper will discuss a knowledge management approach that highlights the importance of such knowledge representation tools as ontologies. The discussed ontology-based model supports the creation of transparent curricula content (Educational Ontology) and the promotion of reliable knowledge testing (Adaptive Knowledge Testing System).
Resumo:
Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. ^ This thesis describes a heterogeneous database system being developed at High-performance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii) a framework for intelligent computing and communication on the Internet applying the concepts of our work. ^
Resumo:
The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. ^ Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. ^ This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model’s parsing mechanism. ^ The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents. ^
Resumo:
The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model's parsing mechanism. The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents.
Resumo:
Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. This thesis describes a heterogeneous database system being developed at Highperformance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i.) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii.) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii.) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv.) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v.) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi.) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii.) a framework for intelligent computing and communication on the Internet applying the concepts of our work.
Resumo:
The main hypothesis of this thesis is that the deve lopment of industrial automation applications efficiently, you need a good structuri ng of data to be handled. Then, with the aim of structuring knowledge involved in the contex t of industrial processes, this thesis proposes an ontology called OntoAuto that conceptua lly models the elements involved in the description of industrial processes. To validat e the proposed ontology, several applica- tions are presented. In the first, two typical indu strial processes are modeled conceptually: treatment unit DEA (Diethanolamine) and kiln. In th e second application, the ontology is used to perform a semantic filtering alarms, which together with the analysis of correla- tions, provides temporal relationships between alar ms from an industrial process. In the third application, the ontology was used for modeli ng and analysis of construction cost and operation processes. In the fourth application, the ontology is adopted to analyze the reliability and availability of an industrial plant . Both for the application as it involves costs for the area of reliability, it was necessary to create new ontologies, and OntoE- con OntoConf, respectivamentem, importing the knowl edge represented in OntoAuto but adding specific information. The main conclusions of the thesis has been that on tology approaches are well suited for structuring the knowledge of industrial process es and based on them, you can develop various advanced applications in industrial automat ion.
Resumo:
Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.
Resumo:
La organización del conocimiento en el contexto de las Ciencias de la Información tiene como esencia la información y el conocimiento debidamente documentado o registrado. La organización del conocimiento como proceso, envuelve tanto la descripción física como de los contenidos de los objetos informacionales. Y el producto de ese proceso descriptivo es la representación de los atributos de un objeto o conjunto de objetos. Las representaciones son construidas por lenguajes elaborados específicamente para los objetivos de la organización en los sistemas de información. Lenguajes que se subdividen en lenguajes que describen el documento (el soporte físico del objeto) y lenguajes que describen la información (los contenidos).A partir de esta premisa la siguiente investigación tiene como objetivo general analizarlos sistemas de Gestión de Información y Conocimiento Institucional principalmente los que proponen utilizar el Currículum Vitae del profesor como única fuente de información, medición y representación de la información y el conocimiento de una organización. Dentro delos principales resultados se muestra la importancia de usar el currículo personal como fuente de información confiable y normalizada; una síntesis de los principales sistemas curriculares que existen a nivel internacional y regional; así como el gráfico del modelo de datos del caso de estudio; y por último, la propuesta del uso de las ontologías como principal herramienta para la organización semántica de la información en un sistema de gestión de información y conocimiento.
Resumo:
One of the leading motivations behind the multilingual semantic web is to make resources accessible digitally in an online global multilingual context. Consequently, it is fundamental for knowledge bases to find a way to manage multilingualism and thus be equipped with those procedures for its conceptual modelling. In this context, the goal of this paper is to discuss how common-sense knowledge and cultural knowledge are modelled in a multilingual framework. More particularly, multilingualism and conceptual modelling are dealt with from the perspective of FunGramKB, a lexico-conceptual knowledge base for natural language understanding. This project argues for a clear division between the lexical and the conceptual dimensions of knowledge. Moreover, the conceptual layer is organized into three modules, which result from a strong commitment towards capturing semantic knowledge (Ontology), procedural knowledge (Cognicon) and episodic knowledge (Onomasticon). Cultural mismatches are discussed and formally represented at the three conceptual levels of FunGramKB.
Resumo:
Key Performance Indicators (KPIs) and their predictions are widely used by the enterprises for informed decision making. Nevertheless , a very important factor, which is generally overlooked, is that the top level strategic KPIs are actually driven by the operational level business processes. These two domains are, however, mostly segregated and analysed in silos with different Business Intelligence solutions. In this paper, we are proposing an approach for advanced Business Simulations, which converges the two domains by utilising process execution & business data, and concepts from Business Dynamics (BD) and Business Ontologies, to promote better system understanding and detailed KPI predictions. Our approach incorporates the automated creation of Causal Loop Diagrams, thus empowering the analyst to critically examine the complex dependencies hidden in the massive amounts of available enterprise data. We have further evaluated our proposed approach in the context of a retail use-case that involved verification of the automatically generated causal models by a domain expert.
Resumo:
Global environmental change (GEC) is an increasingly discussed phenomenon in the scientific literature as evidence of its presence and impacts continues to grow. Yet, while the documentation of GEC is becoming more readily available, local perceptions of GEC— particularly in small-scale societies—and preferences about how to deal with it, are still largely overlooked. Local knowledge and perceptions of GEC are important in that agents make decisions (including on natural resource management) based on individual perceptions. We carried out a systematic literature review that aims to provide an exhaustive state-of-the-art of the degree to and manner in which the study of local perceptions of change are being addressed in GEC research. We reviewed 126 articles found in peer-reviewed journals (between 1998 and 2014) that address local perceptions of GEC. We used three particular lenses of analysis that are known to influence local perceptions, namely (i) cognition, (ii) culture and knowledge, and (iii) possibilities for adaptation.We present our findings on the geographical distribution of the current research, the most common changes reported, perceived drivers and impacts of change, and local explanations and evaluations of change and impacts. Overall, we found the studies to be geographically biased, lacking methodological reporting, mostly theory based with little primary data, and lacking of indepth analysis of the psychological and ontological influences in perception and implications for adaptation. We provide recommendations for future GEC research and propose the development of a “meta-language” around adaptation, perception, and mediation to encourage a greater appreciation and understanding of the diversity around these phenomena across multiple scales, and improved codesign and facilitation of locally relevant adaptation and mitigation strategies.
Resumo:
Este trabalho propõe o desenvolvimento de um modelo de suporte á comunicação entre agentes e uma Ontologia com informações imprecisas. Os conceitos desta ontologia podem possuir sinônimos possibilitando a interpretação de termos linguísticos imprecisos. Tal problema é relacionado às questões de desenvolvimento da comunicação em Sistemas Multiagentes, possuindo como referência uma base de conhecimento da qual estes agentes possam requisitar informações. Neste estudo, a premissa do modelo é o de ser útil como componente na utilização por desenvolvedores que queiram utilizar de forma simplificada uma conexão com uma Ontologia para dar suporte na comunicação. Para o presente estudo são discutidos os conceitos sobre a comunicação no ambiente multiagentes. Também é realizada uma revisão sobre o desenvolvimento de Ontologias, de forma a criar uma ontologia para os agentes. A lógica nebulosa, baseado em variáveis linguísticas, servirá como modeladora da imprecisão da informação, dando suporte a essa questão com a Ontologia e a comunicação. De forma a validar o modelo proposto, é realizado um estudo de caso no sistema multiagentes das hortas urbanas do Parque San Jerónimo, de Sevilha, Espanha.
Resumo:
Background: Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems. Results: The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services. Conclusion: Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays.