933 resultados para Numerical-simulation
Resumo:
The theory of homogeneous barotropic beta-plane turbulence is here extended to include effects arising from spatial inhomogeneity in the form of a zonal shear flow. Attention is restricted to the geophysically important case of zonal flows that are barotropically stable and are of larger scale than the resulting transient eddy field. Because of the presumed scale separation, the disturbance enstrophy is approximately conserved in a fully nonlinear sense, and the (nonlinear) wave-mean-flow interaction may be characterized as a shear-induced spectral transfer of disturbance enstrophy along lines of constant zonal wavenumber k. In this transfer the disturbance energy is generally not conserved. The nonlinear interactions between different disturbance components are turbulent for scales smaller than the inverse of Rhines's cascade-arrest scale κβ[identical with] (β0/2urms)½ and in this regime their leading-order effect may be characterized as a tendency to spread the enstrophy (and energy) along contours of constant total wavenumber κ [identical with] (k2 + l2)½. Insofar as this process of turbulent isotropization involves spectral transfer of disturbance enstrophy across lines of constant zonal wavenumber k, it can be readily distinguished from the shear-induced transfer which proceeds along them. However, an analysis in terms of total wavenumber K alone, which would be justified if the flow were homogeneous, would tend to mask the differences. The foregoing theoretical ideas are tested by performing direct numerical simulation experiments. It is found that the picture of classical beta-plane turbulence is altered, through the effect of the large-scale zonal flow, in the following ways: (i) while the turbulence is still confined to K Kβ, the disturbance field penetrates to the largest scales of motion; (ii) the larger disturbance scales K < Kβ exhibit a tendency to meridional rather than zonal anisotropy, namely towards v2 > u2 rather than vice versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale source is significantly enhanced by the shear-induced transfer associated with straining by the zonal flow. This last effect occurs even when the large-scale shear appears weak to the energy-containing eddies, in the sense that dU/dy [double less-than sign] κ for typical eddy length and velocity scales.
Resumo:
The mean wind direction within an urban canopy changes with height when the incoming flow is not orthogonal to obstacle faces. This wind-turning effect is induced by complex processes and its modelling in urban-canopy (UC) parametrizations is difficult. Here we focus on the analysis of the spatially-averaged flow properties over an aligned array of cubes and their variation with incoming wind direction. For this purpose, Reynolds-averaged Navier–Stokes simulations previously compared, for a reduced number of incident wind directions, against direct numerical simulation results are used. The drag formulation of a UCparametrization ismodified and different drag coefficients are tested in order to reproduce the wind-turning effect within the canopy for oblique wind directions. The simulations carried out for a UC parametrization in one-dimensional mode indicate that a height-dependent drag coefficient is needed to capture this effect.
Resumo:
This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3 s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach
Resumo:
A great number of studies on wind conditions in passages between slab-type buildings have been conducted in the past. However, wind conditions under different structure and configuration of buildings is still unclear and studies existed still can’t provide guidance on urban planning and design, due to the complexity of buildings and aerodynamics. The aim of this paper is to provide more insight in the mechanism of wind conditions in passages. In this paper, a simplified passage model with non-parallel buildings is developed on the basis of the wind tunnel experiments conducted by Blocken et al. (2008). Numerical simulation based on CFD is employed for a detailed investigation of the wind environment in passages between two long narrow buildings with different directions and model validation is performed by comparing numerical results with corresponding wind tunnel measurements.
Resumo:
This paper reviews the implications of climate change for the water environment and its management in England. There is a large literature, but most studies have looked at flow volumes or nutrients and none have considered explicitly the implications of climate change for the delivery of water management objectives. Studies have been undertaken in a small number of locations. Studies have used observations from the past to infer future changes, and have used numerical simulation models with climate change scenarios. The literature indicates that climate change poses risks to the delivery of water management objectives, but that these risks depend on local catchment and water body conditions. Climate change affects the status of water bodies, and it affects the effectiveness of measures to manage the water environment and meet policy objectives. The future impact of climate change on the water environment and its management is uncertain. Impacts are dependent on changes in the duration of dry spells and frequency of ‘flushing’ events, which are highly uncertain and not included in current climate scenarios. There is a good qualitative understanding of ways in which systems may change, but interactions between components of the water environment are poorly understood. Predictive models are only available for some components, and model parametric and structural uncertainty has not been evaluated. The impacts of climate change depend on other pressures on the water environment in a catchment, and also on the management interventions that are undertaken to achieve water management objectives. The paper has also developed a series of consistent conceptual models describing the implications of climate change for pressures on the water environment, based around the source-pathway-receptor concept. They provide a framework for a systematic assessment across catchments and pressures of the implications of climate change for the water environment and its management.
Resumo:
Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.
Resumo:
Techniques devoted to generating triangular meshes from intensity images either take as input a segmented image or generate a mesh without distinguishing individual structures contained in the image. These facts may cause difficulties in using such techniques in some applications, such as numerical simulations. In this work we reformulate a previously developed technique for mesh generation from intensity images called Imesh. This reformulation makes Imesh more versatile due to an unified framework that allows an easy change of refinement metric, rendering it effective for constructing meshes for applications with varied requirements, such as numerical simulation and image modeling. Furthermore, a deeper study about the point insertion problem and the development of geometrical criterion for segmentation is also reported in this paper. Meshes with theoretical guarantee of quality can also be obtained for each individual image structure as a post-processing step, a characteristic not usually found in other methods. The tests demonstrate the flexibility and the effectiveness of the approach.
Resumo:
This work is concerned with the existence of monotone positive solutions for a class of beam equations with nonlinear boundary conditions. The results are obtained by using the monotone iteration method and they extend early works on beams with null boundary conditions. Numerical simulations are also presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We consider incompressible Stokes flow with an internal interface at which the pressure is discontinuous, as happens for example in problems involving surface tension. We assume that the mesh does not follow the interface, which makes classical interpolation spaces to yield suboptimal convergence rates (typically, the interpolation error in the L(2)(Omega)-norm is of order h(1/2)). We propose a modification of the P(1)-conforming space that accommodates discontinuities at the interface without introducing additional degrees of freedom or modifying the sparsity pattern of the linear system. The unknowns are the pressure values at the vertices of the mesh and the basis functions are computed locally at each element, so that the implementation of the proposed space into existing codes is straightforward. With this modification, numerical tests show that the interpolation order improves to O(h(3/2)). The new pressure space is implemented for the stable P(1)(+)/P(1) mini-element discretization, and for the stabilized equal-order P(1)/P(1) discretization. Assessment is carried out for Poiseuille flow with a forcing surface and for a static bubble. In all cases the proposed pressure space leads to improved convergence orders and to more accurate results than the standard P(1) space. In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-Taylor instability and merging bubbles) are reported to show that the proposed space is robust enough to carry out realistic simulations. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
O presente trabalho tem como objetivo estudar o comportamento de camadas superficiais de solo melhorado como base de fundações superficiais. Nesta pesquisa foram realizados ensaios de placa de 30 cm de diâmetro sobre camadas de solo residual compactado e de solo tratado com cimento (teor de 5% de cimento), ambas com 60 cm de espessura. O programa experimental também incluiu a retirada de amostras de campo das camadas de solo melhorado para a execução de ensaios triaxiais drenados (CID) com medida interna de deformações, a fim de obter parâmetros constitutivos para a realização de simulações numéricas. Uma comparação entre os resultados dos ensaios triaxiais com amostras retiradas em campo e moldadas em laboratório (Rohlfes Junior, 1996) é apresentada. A diferença entre os resultados dos ensaios triaxiais com amostras de campo e laboratório foi significativa para o caso das amostras de solo melhorado com cimento, tal fato é atribuído principalmente a dificuldade de mistura em campo. O Método dos Elementos Finitos foi utilizado para simular o comportamento carga x recalque das placas assentes sobre camadas de solo melhorado. O modelo Pseudo-Elástico Não Linear (Hiperbólico) foi empregado na análise numérica para modelar o comportamento dos novos materiais. Os resultados dos ensaios de placa sobre camadas de solo melhorado demonstraram que houve um aumento significativo da capacidade de suporte, além de uma redução considerável dos recalques, quando comparados ao comportamento carga x recalque do solo natural (Cudmani, 1994). A analise do comportamento de fundações superficiais assentes em solos estratificados, através de simulações numéricas, demonstrou ser eficiente para a previsão do comportamento carga x recalque das mesmas.
Resumo:
Neste trabalho foi analisada a melhoria nas características de um solo mole quando tratado com cal, bem como a viabilidade técnica de se utilizar este novo material como uma camada suporte de fundações superficiais. O solo estudado classifica-se pedologicamente como Gley Húmico e a jazida localiza-se no município de Canoas/RS, às margens da BR 386. O trabalho teve as seguintes finalidades: realizar um estudo da influência dos diferentes teores de cal sobre as características tensão x deformação do solo tratado; verificar o ganho de resistência com o tempo de cura; modelar o comportamerito tensão x deformação do material tratado; realizar simulações numéricas, através do Método dos Elementos Finitos, do comportamento carga x recalque de fundações continuas flexíveis assentes sobre o novo material. Adotou-se o teor ótimo de cal (obtido pelo método de Eades & Grim, 1966) de 9% e dois valores inferiores de 7% e 5%. Realizaram-se os seguintes ensaios sobre o solo natural e as misturas de solo-cal: limites de Atterberg, compactação, granulometria, difratograma de raio X, permeabilidade (triaxial) e ensaios triaxiais adensados não drenados(CIU). Todos os ensaios foram realizados para três tempos de cura (7, 28 e 90 dias) e os corpos de prova foram curados em câmara úmida. Para modelar o comportamento tensão x deformação do solo melhorado, adotou-se o Modelo Hiperbólico e para o solo natural o Modelo Cam-Clay Modificado. O Modelo Hiperbólico foi implementado no software CRISPSO, desenvolvido na Universidade de Cambridge, Inglaterra. O software foi utilizado em um estudo paramétrico para determinar a influência do processo de estabilização no comportamento carga x recalque de fundações superficiais. Dos resultados obtidos, concluiu-se: que o método de Eades & Grim (1966) não mostrou-se adequado para determinação do teor ótimo de cal; houve, de maneira geral, melhora nas características físicas com o tratamento com cal; não houve ganho de resistência com o tempo de cura; o modelo hiperbólico representou bem o comportamento das misturas de solo cal e a colocação de uma camada de solo tratado apresenta melhoras no comportamento carga x recalque de fundações superficiais contínuas flexíveis.