926 resultados para Number Theory
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.
Resumo:
In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.
Resumo:
We set new limits for the maximum number of fluxons trapped inside columnar defects, for both cases of metallic and insulated cores. We show that the saturation limit predicted by the Mkrtchyan and Shmidt theory is just a first approximation to our results, because it does not consider the presence of the remaining flux lines exterior to the defects.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM) based on the Reissner's hypothesis is extended to the analysis of zoned plates in order to model a building floor structure. In the proposed formulation each sub-region defines a beam or a slab and depending on the way the sub-regions are represented, one can have two different types of analysis. In the simple bending problem all sub-regions are defined by their middle surface. on the other hand, for the coupled stretching-bending problem all sub-regions are referred to a chosen reference surface, therefore eccentricity effects are taken into account. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. The bending and stretching values defined on the interfaces are approximated along the beam width, reducing therefore the number of degrees of freedom. Then, in the proposed model the set of equations is written in terms of the problem values on the beam axis and on the external boundary without beams. Finally some numerical examples are presented to show the accuracy of the proposed model.
Resumo:
We contrast four distinct versions of the BCS-Bose statistical crossover theory according to the form assumed for the electron-number equation that accompanies the BCS gap equation. The four versions correspond to explicitly accounting for two-hole-(2h) as well as two-electron-(2e) Cooper pairs (CPs), or both in equal proportions, or only either kind. This follows from a recent generalization of the Bose-Einstein condensation (GBEC) statistical theory that includes not boson-boson interactions but rather 2e- and also (without loss of generality) 2h-CPs interacting with unpaired electrons and holes in a single-band model that is easily converted into a two-band model. The GBEC theory is essentially an extension of the Friedberg-Lee 1989 BEC theory of superconductors that excludes 2h-CPs. It can thus recover, when the numbers of 2h- and 2e-CPs in both BE-condensed and non-condensed states are separately equal, the BCS gap equation for all temperatures and couplings as well as the zero-temperature BCS (rigorous-upper-bound) condensation energy for all couplings. But ignoring either 2h- or 2e-CPs it can do neither. In particular, only half the BCS condensation energy is obtained in the two crossover versions ignoring either kind of CPs. We show how critical temperatures T-c from the original BCS-Bose crossover theory in 2D require unphysically large couplings for the Cooper/BCS model interaction to differ significantly from the T(c)s of ordinary BCS theory (where the number equation is substituted by the assumption that the chemical potential equals the Fermi energy). (c) 2007 Published by Elsevier B.V.
Resumo:
Based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, we propose two new models to describe the crystallisation kinetics of glass particles and use them to determine the density of nucleation sites, N(s), on glass powders. We tested these models with sintered compacts of diopside glass particles using sinter-crystallisation treatments at 825 degrees C (T(g)similar to 727 degrees C), that covered from null to almost 100% crystallised volume time fraction. We measured and compared the evolution of the crystallised volume fractions by optical microscopy and x-ray diffraction. Then we fit our expressions to experimental data using Ns and R (the average particle radius) as adjustable parameters. For comparison, we also fit to our data existing expressions that describe the crystallised volume fraction in glass powders. We demonstrate that all the methods allow one to estimate N(s) with reasonable accuracy. For our ground and water washed diopside glass powder, N(s) is between 10(10)-10(11) sites.m(-2). The reasonable agreement between experimental and adjusted R confirms the consistency of all five models tested. However, one of our equations does not require taking into account the change of crystallisation mode from 3-dimensional to 1-dimensional, and this is advantageous.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.
Resumo:
In this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. We give a method which lets us prove that there are planar polynomial centers of degree l with at least 2[(l - 2)/2] critical periods as well as study concrete families of potential, reversible and Lienard centers. This last case is studied in more detail and we prove that the number of critical periods obtained with our approach does not. increases with the order of the perturbation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We calculate three- and four-point functions in super Liouville theory coupled to a super Coulomb gas on world sheets with spherical topology. We first integrate over the zero mode and assume that a parameter takes an integer value. We find the amplitudes, give plausibility arguments in favor of the result, and formally continue the parameter to an arbitrary real number. Remarkably the result is completely parallel to the bosonic case.
Resumo:
The relation between the spin and the mass of an infinite number of particles in a q-deformed dual string theory is studied. For the deformation parameter q a root of unity, in addition to the relation of such values of q with the rational conformal field theory, the Fock space of each oscillator mode in the Fubini-Veneziano operator formulation becomes truncated. Thus, based on general physical grounds, the resulting spin-(mass)2 relation is expected to be below the usual linear trajectory. For such specific values of q, we find that the linear Regge trajectory turns into a square-root trajectory as the mass increases.
Resumo:
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension. © 2000 Elsevier Science B.V.
Resumo:
The critical number of atoms for Bose-Einstein condensates with cylindrically symmetrical traps were calculated. The time evolution of the condensate was also studied at changing ground state. A conjecture on higher-order nonlinear effects was also discussed to determine its signal and strength. The results show that by exchanging frequencies, the geometry favors the condensation of larger number of particles.
Resumo:
The quantitative effect in the maximum number of particles and other static observables was determined. A deviation in the harmonic trap potential that is effective only outside the central part of the potential, with the addition of a term that is proportional to a cubic or quartic power of the distance was considered. Results showed that this study could be easily transferred to other trap geometries to estimate anharmonic effects.
Resumo:
We construct explicit multivortex solutions for the complex sine-Gordon equation (the Lund-Regge model) in two Euclidean dimensions. Unlike the previously found (coaxial) multivortices, the new solutions comprise n single vortices placed at arbitrary positions (but confined within a finite part of the plane.) All multivortices, including the single vortex, have an infinite number of parameters. We also show that, in contrast to the coaxial complex sine-Gordon multivortices, the axially-symmetric solutions of the Ginzburg-Landau model (the stationary Gross-Pitaevskii equation) do not belong to a broader family of noncoaxial multivortex configurations.