976 resultados para Nonlinear Decision Functions
Resumo:
Nowadays, the Portuguese insurance industry operates in a market with a much more aggressive structure than a few decades ago. Markets and the economy have become globalised since the last decade of the 20th century. Market forces have gradually shifted – power is now mainly on the demand side. In order to meet the new requirements, the insurance industry must develop a strong strategic ability to respond to constant changes of the new international economic order.One of the basic aspects of this strategic development will focus on the ability to predict the future. We introduce the subject by briefly describing the sector, its organisational structure in the Portuguese market, and challenges arising from the development of the European Union. We then analyse the economic and financial structure of the sector. From this point of view, we aim at the possibility of designing models that could explain the demand for insurance, claims and technical reserves evolution. Such models, (even if based on the past), would resolve, at least partly, one of the greatest difficulties experienced by insurance companies when estimating the budget. Thus, we examine the existence of variables that explain the previous points, which are capable of forming a basis for designing models that are simple but efficient, and can be used for strategic planning.
Resumo:
In the last decades considerations about equipments' availability became an important issue, as well as its dependence on components characteristics such as reliability and maintainability. This is particularly of outstanding importance if one is dealing with high risk industrial equipments, where these factors play an important and fundamental role in risk management when safety or huge economic values are in discussion. As availability is a function of reliability, maintainability, and maintenance support activities, the main goal is to improve one or more of these factors. This paper intends to show how maintainability can influence availability and present a methodology to select the most important attributes for maintainability using a partial Multi Criteria Decision Making (pMCDM). Improvements in maintainability can be analyzed assuming it as a probability related with a restore probability density function [g(t)].
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
We derive a set of differential inequalities for positive definite functions based on previous results derived for positive definite kernels by purely algebraic methods. Our main results show that the global behavior of a smooth positive definite function is, to a large extent, determined solely by the sequence of even-order derivatives at the origin: if a single one of these vanishes then the function is constant; if they are all non-zero and satisfy a natural growth condition, the function is real-analytic and consequently extends holomorphically to a maximal horizontal strip of the complex plane.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.
Resumo:
In the aftermath of a large-scale disaster, agents' decisions derive from self-interested (e.g. survival), common-good (e.g. victims' rescue) and teamwork (e.g. fire extinction) motivations. However, current decision-theoretic models are either purely individual or purely collective and find it difficult to deal with motivational attitudes; on the other hand, mental-state based models find it difficult to deal with uncertainty. We propose a hybrid, CvI-JI, approach that combines: i) collective 'versus' individual (CvI) decisions, founded on the Markov decision process (MDP) quantitative evaluation of joint-actions, and ii)joint-intentions (JI) formulation of teamwork, founded on the belief-desire-intention (BDI) architecture of general mental-state based reasoning. The CvI-JI evaluation explores the performance's improvement
Resumo:
This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.
Resumo:
Seismic recordings of IRIS/IDA/GSN station CMLA and of several temporary stations in the Azores archipelago are processed with P and S receiver function (PRF and SRF) techniques. Contrary to regional seismic tomography these methods provide estimates of the absolute velocities and of the Vp/Vs ratio up to a depth of similar to 300 km. Joint inversion of PRFs and SRFs for a few data sets consistently reveals a division of the subsurface medium into four zones with a distinctly different Vp/Vs ratio: the crust similar to 20 km thick with a ratio of similar to 1.9 in the lower crust, the high-Vs mantle lid with a strongly reduced VpNs velocity ratio relative to the standard 1.8, the low-velocity zone (LVZ) with a velocity ratio of similar to 2.0, and the underlying upper-mantle layer with a standard velocity ratio. Our estimates of crustal thickness greatly exceed previous estimates (similar to 10 km). The base of the high-Vs lid (the Gutenberg discontinuity) is at a depth of-SO km. The LVZ with a reduction of S velocity of similar to 15% relative to the standard (IASP91) model is terminated at a depth of similar to 200 km. The average thickness of the mantle transition zone (TZ) is evaluated from the time difference between the S410p and SKS660p, seismic phases that are robustly detected in the S and SKS receiver functions. This thickness is practically similar to the standard IASP91 value of 250 km. and is characteristic of a large region of the North Atlantic outside the Azores plateau. Our data are indicative of a reduction of the S-wave velocity of several percent relative to the standard velocity in a depth interval from 460 to 500 km. This reduction is found in the nearest vicinities of the Azores, in the region sampled by the PRFs, but, as evidenced by SRFs, it is missing at a distance of a few hundred kilometers from the islands. We speculate that this anomaly may correspond to the source of a plume which generated the Azores hotspot. Previously, a low S velocity in this depth range was found with SRF techniques beneath a few other hotspots.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Ressonância Magnética
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.