997 resultados para Nonequilibrium statistical mechanics
Resumo:
This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.
Resumo:
Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.
The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.
The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).
The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.
The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.
In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.
Resumo:
A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.
Resumo:
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
Resumo:
Quantum clock models are statistical mechanical spin models which may be regarded as a sort of bridge between the one-dimensional quantum Ising model and the one-dimensional quantum XY model. This thesis aims to provide an exhaustive review of these models using both analytical and numerical techniques. We present some important duality transformations which allow us to recast clock models into different forms, involving for example parafermions and lattice gauge theories. Thus, the notion of topological order enters into the game opening new scenarios for possible applications, like topological quantum computing. The second part of this thesis is devoted to the numerical analysis of clock models. We explore their phase diagram under different setups, with and without chirality, starting with a transverse field and then adding a longitudinal field as well. The most important observables we take into account for diagnosing criticality are the energy gap, the magnetisation, the entanglement entropy and the correlation functions.
Resumo:
In this thesis, we dealt with Restricted Boltzmann Machines with binary priors as models of unsupervised learning, analyzing the role of the number of hidden neurons on the amount of examples needed for a successful training. We simulated a teacher-student scenario and calculated the efficiency of the machine under the assumption of replica symmetry to study the location of the critical threshold beyond which learning begins. Our results confirm the conjecture that, in the absence of correlation between the weights of the data-generating machine, the critical threshold does not depend on the number of hidden units (as long as it is finite) and thus on the complexity of the data. Instead, the presence of correlation significantly reduces the amount of examples needed for training. We have shown that this effect becomes more pronounced as the number of hidden units increases. The entire analysis is supported by numerical simulations that corroborate the results.
Resumo:
We use the finite element method to model and predict the dissipative structures of chemical species for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. In particular, we explore the conditions under which dissipative structures of the species may exist in the Brusselator type of nonequilibrium chemical reaction. Since this is the first time the finite element method and related strategies have been used to study the chemical instability problems in a fluid-saturated porous medium, it is essential to validate the method and strategies before they are put into application. For this purpose, we have rigorously derived the analytical solutions for dissipative structures of chemical species in a benchmark problem, which geometrically is a square. Comparison of the numerical solutions with the analytical ones demonstrates that the proposed numerical method and strategy are robust enough to solve chemical instability problems in a fluid-saturated porous medium. Finally, the related numerical results from two application examples indicate that both the regime and the magnitude of pore-fluid flow have significant effects on the nature of the dissipative structures that developed for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. The motivation for this study is that self-organization under conditions of pore-fluid flow in a porous medium is a potential mechanism of the orebody formation and mineralization in the upper crust of the Earth. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We assayed mtDNA haplotype [300 base pairs (bp) control region] geography and genealogy in the Indo-Pacific tasselfish, Polynemus sheridani from its contiguous estuarine distribution across northern Australia (n = 169). Eight estuaries were sampled from three oceanographic regions (Timor Sea, Gulf of Carpentaria and the Coral Sea) to assess the impact of Pleistocene sea level changes on the historical connectivity among P. sheridani populations. Specifically, we investigated the genetic consequences of disruption to Indian-Pacific Ocean connectivity brought about by the closure of the Torres Strait. Overall there was significant population subdivision among estuaries (F-ST = 0.161, (Phi(ST) = 0.187). Despite a linear distribution, P. sheridani did not show isolation by distance over the entire sampled range because of genetic similarity of estuaries greater than 3000 km apart. However, significant isolation by distance was detected between estuaries separated by less than 3000 km of coastline. Unlike many genetic studies of Indo-Pacific marine species, there was no evidence for an historical division between eastern and western populations. Instead, phylogeographical patterns were dominated by a starlike intraspecific phylogeny coupled with evidence for population expansion in both the Gulf of Carpentaria and the Coral Sea but not the Timor Sea. This was interpreted as evidence for recent west to east recolonization across of northern Australia following the last postglacial marine advance. We argue that although sufficient time has elapsed postcolonization for populations to approach gene flow-drift equilibrium over smaller spatial scales (< 3000 km), the signal of historical colonization persists to obscure the expected equilibrium pattern of isolation by distance over large spatial scales (> 3000 km).
Resumo:
The mechanisms of speech production are complex and have been raising attention from researchers of both medical and computer vision fields. In the speech production mechanism, the articulator’s study is a complex issue, since they have a high level of freedom along this process, namely the tongue, which instigates a problem in its control and observation. In this work it is automatically characterized the tongues shape during the articulation of the oral vowels of Portuguese European by using statistical modeling on MR-images. A point distribution model is built from a set of images collected during artificially sustained articulations of Portuguese European sounds, which can extract the main characteristics of the motion of the tongue. The model built in this work allows under standing more clearly the dynamic speech events involved during sustained articulations. The tongue shape model built can also be useful for speech rehabilitation purposes, specifically to recognize the compensatory movements of the articulators during speech production.
Resumo:
Canadian Journal of Civil Engineering 36(10) 1605–16
Resumo:
We study the interfacial modes of a driven diffusive model under suitable nonequilibrium conditions leading to possible instability. The external field parallel to the interface, which sets up a steady-state parallel flux, enhances the growth or decay rates of the interfacial modes. More dramatically, asymmetry in the model can introduce an oscillatory component into the interfacial dispersion relation. In certain circumstances, the applied field behaves as a singular perturbation.
Resumo:
We show that time-dependent couplings may lead to nontrivial scaling properties of the surface fluctuations of the asymptotic regime in nonequilibrium kinetic roughening models. Three typical situations are studied. In the case of a crossover between two different rough regimes, the time-dependent coupling may result in anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to either a flat or damping regime, the time-dependent crossover length may conspire to produce a rough surface, although the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing debate in the problem of spontaneous imbibition, where time-dependent couplings naturally arise in theoretical models and experiments.
Resumo:
A simple model exhibiting a noise-induced ordering transition (NIOT) and a noise-induced disordering transition (NIDT), in which the noise is purely multiplicative, is presented. Both transitions are found in two dimensions as well as in one dimension. We show analytically and numerically that the critical behavior of these two transitions is described by the so called multiplicative noise (MN) universality class. A computation of the set of critical exponents is presented in both d=1 and d=2.
Resumo:
A general and straightforward analytical expression for the defect-state-energy distribution of a-Si:H is obtained through a statistical-mechanical treatment of the hydrogen occupation for different sites. Broadening of available defect energy levels (defect pool) and their charge state, both in electronic equilibrium and nonequilibrium steady-state situations, are considered. The model gives quantitative results that reproduce different defect phenomena, such as the thermally activated spin density, the gap-state dependence on the Fermi level, and the intensity and temperature dependence of light-induced spin density. An interpretation of the Staebler-Wronski effect is proposed, based on the ''conversion'' of shallow charged centers to neutrals near the middle of the gap as a consequence of hydrogen redistribution.