953 resultados para Non-structural concrete


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incidence of NTM (non tuberculous mycobacteria) pulmonary disease is increasing. The diagnosis must be established in the presence of clinical, radiological and microbiological findings. Groups at risk to contract pulmonary disease due to NTM are patients with underlying structural lung disease. Treatment of NTM is long and requires multiple drugs combinations. Relapses and re-infection are not rare. Our understanding in many matters of NTM pulmonary disease is incomplete. Further research is necessary in order to understand the host's defense mechanisms against NTM, and the factors that influence the evolution to lung disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive measurement for the Iowa DOT and contractors. The thickness incentive can be as much as 3% of the concrete contact unit price and the disincentive can be as severe as remove and replace. This study evaluated the potential of the MIT device for PCC pavement thickness quality assurance. The limited testing indicates the unit is sufficiently repeatable and accurate enough to replace core drilling as the thickness measurement method. Further study is needed to statistically establish the single user and multi-user/device precision as well as establish an appropriate sampling protocol and PWL specification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This guide specification and commentary for concrete pavements presents current state-of-the art thinking with respect to materials and mixture selection, proportioning, and acceptance. This document takes into account the different environments, practices, and materials in use across the United States and allows optional inputs for local application. The following concrete pavement types are considered: jointed plain concrete pavement, the most commonly used pavement type and may be doweled or non-doweled at transverse joints; and continuously reinforced concrete pavement, typically constructed without any transverse joints, typically used for locations with high truck traffic loads and/or poor support conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for rapid processing of the FWD data along with a user manual. The software system automatically reads the FWD raw data collected by the JILS-20 type FWD machine that Iowa DOT owns, processes and analyzes the collected data with the rapid prediction algorithms developed during the phase I study. This system smoothly integrates the FWD data analysis algorithms and the computer program being used to collect the pavement deflection data. This system can be used to assess pavement condition, estimate remaining pavement life, and eventually help assess pavement rehabilitation strategies by the Iowa DOT pavement management team. This report describes the developed software in detail and can also be used as a user-manual for conducting simulation studies and detailed analyses. *********************** Large File ***********************

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of non-metallic load transfer and reinforcement devices for concrete highway pavements is a possible alternative to avoid corrosion problems related to the current practice of steel materials. Laboratory and field testing of highway pavement dowel bars, made of both steel and fiber composite materials, and fiber composite tie rods were carried out in this research investigation. Fatigue, static, and dynamic testing was performed on full-scale concrete pavement slabs which were supported by a simulated subgrade and which included a single transverse joint. The bahavior of the full-scale specimens with both steel and fiber composite dowels placed in the test joints was monitored during several million load cycles which simulated truck traffic at a transverse joint. Static bond tests were conducted on fiber composite tie rods to determine the required embedment length. These tests took the form of bending tests which included curvature and shear in the embedment zone and pullout tests which subjected the test specimen to axial tension only. Fiber composite dowel bars were placed at two transverse joints during construction of a new concrete highway pavement in order to evaluate their performance under actual field conditions. Fiber composite tie rods were also placed in the longitudinal joint between the two fiber composite doweled transverse joints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precast prestressed concrete panels have been used as subdecks in bridge construction in Iowa and other states. To investigate the performance of these types of composite slabs at locations adjacent to abutment and pier diaphragms in skewed bridges, a research prcject which involved surveys of design agencies and precast producers, field inspections of existing bridges, analytical studies, and experimental testing was conducted. The survey results from the design agencies and panel producers showed that standardization of precast panel construction would be desirable, that additional inspections at the precast plant and at the bridge site would be beneficial, and that some form of economical study should be undertaken to determine actual cost savings associated with composite slab construction. Three bridges in Hardin County, Iowa were inspected to observe general geometric relationships, construction details, and to note the visual condition of the bridges. Hairline cracks beneath several of the prestressing strands in many of the precast panels were observed, and a slight discoloration of the concrete was seen beneath most of the strands. Also, some rust staining was visible at isolated locations on several panels. Based on the findings of these inspections, future inspections are recommended to monitor the condition of these and other bridges constructed with precast panel subdecks. Five full-scale composite slab specimens were constructed in the Structural Engineering Laboratory at Iowa State University. One specimen modeled bridge deck conditions which are not adjacent to abutment or pier diaphragms, and the other four specimens represented the geometric conditions which occur for skewed diaphragms of 0, 15, 30, and 40 degrees. The specimens were subjected to wheel loads of service and factored level magnitudes at many locations on the slab surface and to concentrated loads which produced failure of the composite slab. The measured slab deflections and bending strains at both service and factored load levels compared reasonably well with the results predicted by simplified Finite element analyses of the specimens. To analytically evaluate the nominal strength for a composite slab specimen, yield-line and punching shear theories were applied. Yield-line limit loads were computed using the crack patterns generated during an ultimate strength test. In most cases, these analyses indicated that the failure mode was not flexural. Since the punching shear limit loads in most instances were close to the failure loads, and since the failure surfaces immediately adjacent to the wheel load footprint appeared to be a truncated prism shape, the probable failure mode for all of the specimens was punching shear. The development lengths for the prestressing strands in the rectangular and trapezoidal shaped panels was qualitatively investigated by monitoring strand slippage at the ends of selected prestressing strands. The initial strand transfer length was established experimentally by monitoring concrete strains during strand detensioning, and this length was verified analytically by a finite element analysis. Even though the computed strand embedment lengths in the panels were not sufficient to fully develop the ultimate strand stress, sufficient stab strength existed. Composite behavior for the slab specimens was evaluated by monitoring slippage between a panel and the topping slab and by computation of the difference in the flexural strains between the top of the precast panel and the underside of the topping slab at various locations. Prior to the failure of a composite slab specimen, a localized loss of composite behavior was detected. The static load strength performance of the composite slab specimens significantly exceeded the design load requirements. Even with skew angles of up to 40 degrees, the nominal strength of the slabs did not appear to be affected when the ultimate strength test load was positioned on the portion of each slab containing the trapezoidal-shaped panel. At service and factored level loads, the joint between precast panels did not appear to influence the load distribution along the length of the specimens. Based on the static load strength of the composite slab specimens, the continued use of precast panels as subdecks in bridge deck construction is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each year several prestressed concrete girder bridges in Iowa and other states are struck and damaged by vehicles with loads too high to pass under the bridge. Whether or not intermediate diaphragms play a significant role in reducing the effect of these unusual loading conditions has often been a topic of discussion. A study of the effects of the type and location of intermediate diaphragms in prestressed concrete girder bridges when the bridge girder flanges were subjected to various levels of vertical and horizontal loading was undertaken. The purpose of the research was to determine whether steel diaphragms of any conventional configuration can provide adequate protection to minimize the damage to prestressed concrete girders caused by lateral loads, similar to the protection provided by the reinforced concrete intermediate diaphragms presently being used by the Iowa Department of Transportation. The research program conducted and described in this report included the following: A comprehensive literature search and survey questionnaire were undertaken to define the state-of-the-art in the use of intermediate diaphragms in prestressed concrete girder bridges. A full scale, simple span, restressed concrete girder bridge model, containing three beams was constructed and tested with several types of intermediate diaphragms located at the one-third points of the span or at the mid-span. Analytical studies involving a three-dimensional finite element analysis model were used to provide additional information on the behavior of the experimental bridge. The performance of the bridge with no intermediate diaphragms was quite different than that with intermediate diaphragms in place. All intermediate diaphragms tested had some effect in distributing the loads to the slab and other girders, although some diaphragm types performed better than others. The research conducted has indicated that the replacement of the reinforced concrete intermediate diaphragms currently being used in Iowa with structural steel diaphragms may be possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant question is: What role does newly-formed expansive mineral growth play in the premature deterioration of concrete? These minerals (ettringite and brucite) are formed in cement paste as a result of chemical reactions involving cement and coarse/fine aggregate. Petrographic observations and SEM/EDAX analysis were conducted in order to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken from Iowa concrete highways that showed premature deterioration. Mechanisms involved in deterioration were investigated. A second objective was to investigate whether deicer solutions exacerbate the formation of expansive minerals and concrete deterioration. Magnesium in deicer solutions causes the most severe paste deterioration by forming non-cementitious magnesium silicate hydrate and brucite. Chloride in deicer solutions promotes decalcification of paste and alters ettringite to chloroaluminate. Calcium magnesium acetate (CMA) and magnesium acetate (Mg-acetate) produce the most deleterious effects on concrete, with calcium acetate (Ca-acetate) being much less severe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iowa counties have tried to rehabilitate deteriorating portland cement concrete (PCC) pavements with standard overlays, placement of engineering fabric, rock, open graded bituminous mixes and cracking and seating. While these methods prolong the life of the road, the cracks in the old pavement have eventually reflected to the surface. One possible alternative for rehabilitating severely deteriorated roads and preventing reflective cracking is the rubblization process. The objective of this research project was to rehabilitate and evaluate a severely deteriorated PCC roadway using a rubblization process. A 3.0 km (1.9 mi) section of L63 in Mills County was selected for this research. The road was divided into 16 sections. A resonate frequency vibration pavement breaker was used to rubblize the existing pavement. The variables of rubblization, drainage, and ACC overlay depths of 75 mm (3 in.), 100 mm (4 in.), and 125 mm (5 in.) were evaluated. The research on rubblized concrete pavement bases support the following conclusions: (1) The rubblization process prevents reflective cracking; (2) Edge drains improved the structural rating of the rubblized roadway; (3) An ACC overlay of 125 mm (5 in.) on a rubblized base provided an excellent roadway regardless of soil and drainage conditions; (4) An ACC overlay of 75 mm (3 in.) on a rubblized base can provide a good roadway if the soil structure below the rubblized base is stable and well drained; and (5) The Road Rater structural ratings of the rubblized test sections for this project are comparable to the nonrubblized test sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 5.8 mile section of Dubuque County (Iowa) Road D-53 was selected for this project, the objective of which were to: 1. identify a cost effective asphalt emulsion bound macadam typical cross section; 2. determine the effectiveness of engineering fabric placed under macadam roadbeds; and 3. evalaute the use of emulsions in surface seal coats. A number of conclusions were reached: 1. The minus #200 sieve material for the macadam stone should be held to a minimum. For the emulsion used on this project, the minus #200 material had less than 4 percent to achieve satisfactory coating of the macadam stone. 2. The placement of the emulsion treated macadam required no additional equipment or time than the plain macadam placement. 3. Emulsion treating the macadam stone for the shoulder base appears unnecessary. 4. The emulsion treated macadam base beneath an asphaltic concrete wearing surface yielded a higher structural rating than the plain macadam beneath a comparable ashaltic concrete surface. 5. The performance of the fabric between the subgrade and the macadam base to prevent soil intrusion into the base could not be determined by the non-destructive testing conducted. 6. When no choke stone is used over the macadam base, allowance for ac mix overrun should be made. 7. Use of an emulsion instead of a cutback asphalt saved money and energy. However, the poor performance of the seal coat negated any real savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Transportation (IDOT) received a Strategic Highway Research Program (SHRP) gyratory compactor in December 1994. Since then IDOT has been studying the ability of the compactor to analyze fundamental properties of aggregates such as shape, texture, and gradation by studying the volumetrics of the aggregate blends under a standard load using the SHRP gyratory compactor. This method of analyzing the volumetrics of aggregate blends is similar to SHRP's fine aggregate angularity procedure, which analyzes void levels in noncompacted aggregate blends, which in turn can be used to evaluate the texture or shape of aggregates, what SHRP refers to as angularity. Research is showing that by splitting the aggregate blend on the 2.36-mm (#8) sieve and analyzing the volumetrics or angularity of the separated blend, important fundamental properties can be determined. Most important is structure (the degree and location of aggregate interlock). In addition, analysis of the volumes of the coarse and fine portions can predict the voids in the mineral aggregate and the desired asphalt content. By predicting these properties, it can be determined whether the combined aggregate blend, when mixed with asphalt cement, will produce a mix with structural adequacy to carry the designed traffic load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discarded tires present major disposal and environmental problems. One method of recycling tires is to use finely ground rubber from tires in asphalt cement concrete (ACC). This process has been researched in Iowa since 1991. There are currently eight projects being researched. This project involved using crumb rubber modifier (CRM) in ACC using a dry process. This project is located on US 63 in Howard County. It involved 17 test sections. There were five test sections using 20 lb of CRM per ton, four test sections using 10 lb of CRM per ton and eight test sections using a conventional mix. Not only were different mixes used, but the overlay was also placed in various thicknesses ranging from 2 in. to 8 in. (5 cm to 20 cm). The project was completed in August 1994. The project construction went well with only minor problems. This report contains information about procedures and tests that were completed and those that will be completed. Evaluation on the project will continue for five years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A water reducing and retarding type admixture in concrete is commonly used on continuous bridge deck pours in Iowa. The concrete placed in the negative moment areas must remain plastic until all the dead load deflection due to the new deck's weight occurs. If the concrete does not remain plastic until the total deflection has occurred, structural cracks will develop in these areas. Retarding type admixtures will delay the setting time of concrete and prevent structural cracks if added in the proper amounts. In Section 2412.02 of the Standard Specifications, 1972, Iowa State Highway Commission, it states, "The admixture shall be used in amounts recommended by the manufacturer for conditions which prevail on the project and as approved by the engineer." The conditions which prevail on the project depend on temperature, humidity, wind conditions, etc. Each of these factors will affect the setting rate of the plastic concrete. The purpose of this project is to provide data that will be useful to field personnel concerning the retardation of concrete setting times, and how the of sets will vary with different addition rates and curing temperatures holding all other atmospheric variables constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1951 Greene County and the Iowa Highway Research Board paved County Road E-33 from Iowa Highway No. 17 (now Iowa 4) to Farlin with various thicknesses [ranging from 4.5 in. (11.4 cm) to 6 in. (15.2 cm)] of portland cement concrete pavement. The project, designated HR-9, was divided into ten research sections. This formed pavement was placed on the existing grade. Eight of the sections were non-reinforced except for centerline tie bars and no contraction joints were used. Mesh reinforcing and contraction joints spaced at 29 ft 7 in. (9.02 m) intervals were used in two 4.5-in. (11.4-cm) thick sections. The concrete in one of the sections was air entrained. Signs denoting the design and limits of the research sections were placed along the roadway. The pavement has performed well over its 28-year life, carrying a light volume of traffic safely while requiring no major maintenance. The 4.5-in. (11.4-cm) thick mesh-reinforced pavement with contraction joints has exhibited the best overall performance.