935 resultados para NONSTEROIDAL ANTI-INFLAMMATORY DRUGS
Resumo:
Context: Species of Baccharis exhibit antibiotic, antiseptic, and wound-healing properties, and have been used in the traditional medicine of South America for the treatment of inflammation, headaches, diabetes, and hepatobiliary disorders.Objective: To investigate the anti-inflammatory activity of organic phases from EtOH extract of the aerial parts of Baccharis uncinella DC (Asteraceae).Materials and methods: The crude EtOH extract from the aerial parts of B. uncinella was subjected to partition procedures and the corresponding CH(2)Cl(2) and EtOAc phases were subjected to several chromatographic separation procedures. Thus, these phases and their purified compounds were assayed for evaluation of anti-inflammatory activity.Results: The CH(2)Cl(2) phase from EtOH extract from B. uncinella contained two triterpenoids (oleanolic and ursolic acids) and one flavonoid (pectolinaringenin), whereas the respective EtOAc phase showed to be composed mainly by two phenylpropanoid derivatives (caffeic and ferulic acids). The CH(2)Cl(2) and EtOAc phases as well as their isolated compounds exhibited anti-inflammatory effects against inflammatory reactions induced by phospholipase A2 (from Crotalus durissus terrificus venom) and by carrageenan.Discussion and conclusion: The results suggested that the components obtained from partition phases of EtOH extract of B. uncinella could represent lead molecules for the development of anti-inflammatory agents. Additionally, the results confirmed the use of Baccharis genus in the traditional medicine of South America for the treatment of inflammation and other heath disorders. To date, the present work describes for the first time the anti-inflammatory effects of compounds isolated from B. uncinella.
Resumo:
Dissertação de Mestrado, Oncobiologia: Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
The aim of this study was to evaluate the anti-inflammatory activity of Petit Verdot Extract and hexane, chloroform and ethyl acetate fractions obtained from grape pomace, in addition to identifying active compounds. The PVE and EAF reduced significantly paw edema and neutrophil migration when compared with control groups. The PVE reduced levels of TNF-α and IL1-β in the peritoneal fluid, whereas the EAF did not reduce cytokines significantly. Two hydroxybenzoic acids, two proanthocyanidins, three flavan-3-ol monomers and three anthocyanins were identified in the PVE and EAF by LC-MS/MS. The stilbene transresveratrol was identified only in the EAF. The phenolic compounds were quantified using HPLC-DAD analysis, except for the stilbenes, which were not sensible for the detection by the method. Since PVE and EAF showed significantly anti-inflammatory effects and high concentration of phenolic compounds, we concluded that Petit Verdot pomace could be an interesting source of anti-inflammatory bioactives.
Resumo:
Purpose: To evaluate the cytotoxic, anti-inflammatory and antioxidant activities of four different solvent extracts obtained from the aerial parts of Galega officinalis L Methods: The hexane, DCM, methanol and water extracts of G. officinalis were successively obtained by soxhlet extraction method. The cytotoxic activity of the extracts was assessed against human lung carcinoma (A-549), human colorectal adenocarcinoma (HT-29), human brain glioblastoma (U-87), and colon adenocarcinoma (DLD-1) by Resazurine test. The antioxidant activity of extracts were determined by Folin-Ciocalteau, oxygen radical absorbing capacity (ORAC), and 2’.7’-dichlorofluorescin-diacetate (DCFH-DA) cell-based assay while their anti-inflammatory activity was determined by nitric oxide (NO) assay. Results: DCM extract showed strong cytotoxic activity against lung adenocarcinoma and brain glioblastoma cell lines, with IC50 (concentration inhibiting 50 % of cell growth) values of 11 ± 0.4 and 16 ± 3 μg/mL, respectively. The hexane extract showed moderate anticancer activity against the same cell lines (59 ± 13 and 63 ± 16 μg/mL, respectively). DCM extract also showed significant anti-inflammatory activity, inhibiting NO release by 86.7 % at 40 μg/mL in lipopolysaccharide (LPS) - stimulated murine RAW 264.7 macrophages. Of all test extracts, the methanol extract of G. officinalis showed the highest antioxidant activity with 2.33 ± 0.09 μmol Trolox/mg , 7.10 ± 0.9 g tannic acid equivalent (TAE), and IC50 of 44 ± 4 μg/mL. Conclusion: The findings of this study suggest that DCM extract may possess anticancer effect against lung adenocarcinoma and brain glioblastoma, as well as serve as an anti-inflammatory agent.
Resumo:
Purpose: To investigate the ethnomedicinal claims regarding the use of Acacia jacquemontii Benth. (Fabaceae) in fever, pain and inflammation. Methods: The methanol root bark extract (AJRBM) of the plant was used in the studies. Preliminary phytochemical screening of the extract was carried out according to established methods. Analgesic, anti-inflammatory and antipyretic activities were evaluated using acetic acid-induced writhing, carrageennan-induced rat paw edema and Brewer’s yeast-induced pyrexia models, respectively. The extract was administered at doses of 50 and 100 mg/kg. Aspirin (300 mg/kg, p.o.) was used as a reference drug in all models. Normal saline (10 mL/kg p.o.) was used as negative control. Results: Phytochemical screening results indicate the presence of cardioactive glycosides, tannins, flavonoids and saponins. In the acetic acid-induced writhing model, the methanol extract exhibited significant (p < 0.05) analgesic effect with 58.98 % reduction in writhing response at a dose of 100 mg/kg, compared with untreated control group. The extract significantly (p < 0.05) reduced carrageenan-induced edema at doses of 50 and 100 mg/kg to 36.84 and 47.36 %, respectively, after 1 h of extract administration. The extract exhibited predominantly dose-dependent antipyretic effect in Brewer’s yeast-induced pyrexia model. Maximum reduction in body temperature to 37.07 and 38.29 ºC at doses of 50 and 100 mg/kg, respectively, was observed, compared with untreated group (38.90 ºC) after 1 h, but this was not significant (p < 0.05). Conclusion: The plant extract exerts inhibitory effect on peripheral pain stimuli, edema and dosedependent anti-pyrexia, and thus justifies the ethnomedicinal use of Acacia jacquemontii Benth. in the management of pain, fever and inflammation.
Resumo:
We investigated the effect of different exercise modalities on high sensitivity-C reactive protein (hs-CRP) and other inflammatory markers in patients with type 2 diabetes and the metabolic syndrome. Eighty-two patients were randomized into 4 groups: sedentary control (A); receiving counseling to perform low-intensity physical activity (B); performing prescribed and supervised high-intensity aerobic (C) or aerobic + resistance (D) exercise (with the same caloric expenditure) for 12 months. Evaluation of leisure-time physical activity and assessment of physical fitness, cardiovascular risk factors and inflammatory biomarkers was performed at baseline and every 3 months. Volume of physical activity increased and HbA1c decreased in Groups B–D. VO2max, HOMA-IR index, HDL-cholesterol, waist circumference and albuminuria improved in Groups C and D, whereas strength and flexibility improved only in Group D. Levels of hs-CRP decreased in all three exercising groups, but the reduction was significant only in Groups C and D, and particularly in Group D. Changes in VO2max and the exercise modalities were strong predictors of hs-CRP reduction, independent of body weight. Leptin, resistin and interleukin-6 decreased, whereas adiponectin increased in Groups C and D. Interleukin-1β, tumor necrosis factor-α and interferon-γ decreased, whereas anti-inflammatory interleukin-4 and 10 increased only in Group D. In conclusion, physical exercise in type 2 diabetic patients with the metabolic syndrome is associated with a significant reduction of hs-CRP and other inflammatory and insulin resistance biomarkers, independent of weight loss. Long-term high-intensity (preferably mixed) training, in addition to daytime physical activity, is required to obtain a significant anti-inflammatory effect.
Resumo:
Lavenders have been used in folk medicine as disinfectant, expectorant, analgesic, anti-spasmodic, laxative and stimulant. Some species are endemic of Iberian Peninsula and often found in the Portuguese montado, including Lavandula stoechas subsp. luisieri and Lavandula pedunculata. The investigation of the antioxidant and anti-inflammatory potential of the Portuguese montado flora is very poor and restricted to a few botanical families, and their biological activities are mainly attributed to the essential oils. So, it is crucial to know the properties of Lavandula EOs, contributing for animal health and the valorisation of Portuguese montado flora. The aim of this study was to evaluate chemical composition, antioxidant properties and screening anti-inflammatory potential of EOs and extracts of Lavandula stoechas L. subsps. luisieri Rozeira, Lavandula pedunculata (Mill.) Cav. subsp. pedunculata and Lavandula viridis L’Hér, wild grown in the south of Portugal.
Resumo:
Syngonanthus macrolepis, popularly known in Brazil as 'sempre-vivas', is a plant from the family Eriocaulaceae, it is found in the states of Minas Gerais and Bahia. The species contains a variety of constituents, including flavonoids with gastroprotective effect. In this work, a flavonoid-rich fraction (Sm-FRF) obtained from scapes of S. macrolepis was investigated for preventing gastric ulceration in mice and rats. The activity was evaluated in models of induced gastric ulcer (absolute ethanol, stress, non-steroidal anti-inflammatory drugs and pylorus ligation). The cytoprotective mechanisms of the Sm-FRF in relation to sulfhydryl (SH) groups, nitric oxide (NO) and antioxidant enzymes were also evaluated. The Sm-FRF (100 mg/kg, p.o.) significantly reduced gastric injury in all models, and did not alter gastric juice parameters after pylorus ligation. The results indicate significant gastroprotective activity for the Sm-FRF, which probably involves the participation of both SH groups and the antioxidant system. Both are integral parts of the gastrointestinal mucosa's cytoprotective mechanisms against aggressive factors.
Resumo:
Prostaglandins control osteoblastic and osteoclastic function under physiological or pathological conditions and are important modulators of the bone healing process. The non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and consequently prostaglandins synthesis. Experimental and clinical evidence has indicated a risk for reparative bone formation related to the use of non-selective (COX-1 and COX-2) and COX-2 selective NSAIDs. Ketorolac is a non-selective NSAID which, at low doses, has a preferential COX-1 inhibitory effect and etoricoxib is a new selective COX-2 inhibitor. Although literature data have suggested that ketorolac can interfere negatively with long bone fracture healing, there seems to be no study associating etoricoxib with reparative bone formation. Paracetamol/acetaminophen, one of the first choices for pain control in clinical dentistry, has been considered a weak anti-inflammatory drug, although supposedly capable of inhibiting COX-2 activity in inflammatory sites. OBJECTIVE: The purpose of the present study was to investigate whether paracetamol, ketorolac and etoricoxib can hinder alveolar bone formation, taking the filling of rat extraction socket with newly formed bone as experimental model. MATERIAL AND METHODS: The degree of new bone formation inside the alveolar socket was estimated two weeks after tooth extraction by a differential point-counting method, using an optical microscopy with a digital camera for image capture and histometry software. Differences between groups were analyzed by ANOVA after confirming a normal distribution of sample data. RESULTS AND CONCLUSIONS: Histometric results confirmed that none of the tested drugs had a detrimental effect in the volume fraction of bone trabeculae formed inside the alveolar socket.
Resumo:
Um eqüino de nove anos de idade apresentou ausência de ar expirado e secreção serossanguinolenta na narina direita, associado a ruído respiratório. Os exames endoscópico e radiológico mostraram uma formação de aproximadamente seis centímetros de diâmetro recoberta por mucosa amarelada, que obstruía a cavidade nasal direita e insinuava-se para a cavidade nasal esquerda. Tal massa foi ressecada por meio de sinusotomia frontal direita. O exame histológico e a cultura revelaram lesão granulomatosa causada por fungos. O tratamento pós-operatório compreendeu associação de antibiótico e antiinflamatório, assim como de lavagens com água destilada e chá de camomila.
Resumo:
This study evaluated the influence of gastrointestinal environmental factors (pH, digestive enzymes, food components, medicaments) on the survival of Lactobacillus casei Shirota and Lactobacillus casei LC01, using a semi-dynamic in vitro model that simulates the transit of microorganisms through the human GIT. The strains were first exposed to different simulated gastric juices for different periods of time (0, 30, 60 and 120 min), and then to simulated intestinal fluids for zero, 120, 180 and 240 min, in a step-wise format. The number of viable cells was determined after each step. The influence of food residues (skim milk) in the fluids and resistance to medicaments commonly used for varied therapeutic purposes (analgesics, antiarrhythmics, antibiotics, antihistaminics, proton pump inhibitors, etc.) were also evaluated. Results indicated that survival of both cultures was pH and time dependent, and digestive enzymes had little influence. Milk components presented a protective effect, and medicaments, especially anti-inflammatory drugs, influenced markedly the viability of the probiotic cultures, indicating that the beneficial effects of the two probiotic cultures to health are dependent of environmental factors encountered in the human gastrointestinal tract.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
Kanashiro A, Pessini AC, Machado RR, Malvar DC, Aguiar FA, Soares DM, Vale ML, Souza GEP. Characterization and pharmacological evaluation of febrile response on zymosan-induced arthritis in rats. Am J Physiol Regul Integr Comp Physiol 296: R1631-R1640, 2009. First published February 25, 2009; doi:10.1152/ajpregu.90527.2008.-The present study investigated the febrile response in zymosan-induced arthritis, as well as the increase in PGE(2) concentration in the cerebrospinal fluid (CSF), along with the effects of antipyretic drugs on these responses in rats. Zymosan intra-articularly injected at the dose of 0.5 mg did not affect the body core temperature (Tc) compared with saline (control), whereas at doses of 1 and 2 mg, zymosan promoted a flattened increase in Tc and declined thereafter. The dose of 4 mg of zymosan was selected for further experiments because it elicited a marked and long-lasting Tc elevation starting at 3 1/2 h, peaking at 5 1/2 h, and remaining until 10 h. This temperature increase was preceded by a decrease in the tail skin temperature, as well as hyperalgesia and edema in the knee joint. No febrile response was observed in the following days. In addition, zymosan-induced fever was not modified by the sciatic nerve excision. Zymosan increased PGE2 concentration in the CSF but not in the plasma. Oral pretreatment with ibuprofen (5-20 mg/kg), celecoxib (1-10 mg/kg), dipyrone (60-240 mg/kg), and paracetamol (100-200 mg/kg) or subcutaneous injection of dexamethasone (0.25-1.0 mg/kg) dose-dependently reduced or prevented the fever during the zymosan-induced arthritis. Celecoxib (5 mg/kg), paracetamol (150 mg/kg), and dipyrone (120 mg/kg) decreased CSF PGE2 concentration and fever during zymosan-induced arthritis, suggesting the involvement of PGE2 in this response.
Resumo:
The aim of this study is to evaluate whether aspirin reduces Diabetis Mellitus (DM) oxidative damage in the lacrimal gland (LG), and ocular surface (OS). Ten weeks after streptozotocin induced DM and aspirin treatment, LG and OS of rats were compared for tear secretion, hidtology, peroxidase activity, and expression of uncoupling proteins (UCPs). DM reduction of tear secretion was prevented by aspirin (P < 0.01). Alterations of LG morphology and increased numbers of lipofucsin-like inclusions were observed in diabetic but not in aspirin-treated diabetic rats. Peroxidase activity levels were higher and UCP-2 was reduced in DM LG but not in aspirin treated (P = 0.0025 and P < 0.05, respectively). The findings prevented by aspirin indicate a direct inhibitory effect on oxidative pathways in LG and their inflammatory consequences, preserving the LG structure and function against hyperglycemia and/or insulin deficiency damage.
Resumo:
The overexpression of cyclooxygenase (COX)-2 is a frequent event in squamous cell carcinomas of the head and neck (HNSCC), and non-steroidal anti-inflammatory drugs, which are potent inhibitors of COX-1 and COX-2, exert chemopreventive effects on HNSCC cancer development. COX-2 promotes the release of the pro-inflammatory mediator prostaglandin E2 (PGE2), which acts on its cell surface G protein-coupled receptors EP1, EP2, EP3, and EP4. Here, we investigated the role of PGE2 and its receptors in cellular proliferation in HNSCC. The expression of COX-2 and EP1-4 was examined in immortalized oral epithelial cells and in a representative panel of HNSCC cell lines, and based on these data EP1-EP3 and COX-2 expression were evaluated by immunohistochemistry in a large clinical sample collection using HNSCC tissue microarrays. The ability of selective COX-2 inhibition to block PGE2 secretion was measured by ELISA specific assays. The effects of PGE2 on cell proliferation were evaluated using PGE2, its stable analog, and EP2 and EP3-specific synthetic agonists. The results presented here show that HNSCC tumoral lesions and their derived cell lines constitutively express COX-2 and the EP1, EP2 and EP3 receptors for PGE2. HNSCC cells secrete PGE2, which can be suppressed by low concentrations of COX-2 selective inhibitors, without inhibiting cell proliferation. Exogenously added stable PGE2 and EP3-specific agonists induce DNA synthesis in all HNSCC cell lines tested. Overall, our study supports the emerging notion that PGE2 produced in the tumor microenvironment by the overexpression of COX-2 in tumoral and inflammatory cells may promote the growth of HNSCC cells in an autocrine and paracrine fashion by acting on PGE2 receptors that are widely expressed in most HNSCC cancer cells. In particular, our findings suggest that EP3 receptor may play a more prominent role in HNSCC cell growth promotion, thus providing a rationale for the future evaluation of this PGE2 receptor as a target for HNSCC prevention strategies. Published by Elsevier Ltd.