994 resultados para Motion classification
Resumo:
Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.
Resumo:
To be diagnostically useful, structural MRI must reliably distinguish Alzheimer's disease (AD) from normal aging in individual scans. Recent advances in statistical learning theory have led to the application of support vector machines to MRI for detection of a variety of disease states. The aims of this study were to assess how successfully support vector machines assigned individual diagnoses and to determine whether data-sets combined from multiple scanners and different centres could be used to obtain effective classification of scans. We used linear support vector machines to classify the grey matter segment of T1-weighted MR scans from pathologically proven AD patients and cognitively normal elderly individuals obtained from two centres with different scanning equipment. Because the clinical diagnosis of mild AD is difficult we also tested the ability of support vector machines to differentiate control scans from patients without post-mortem confirmation. Finally we sought to use these methods to differentiate scans between patients suffering from AD from those with frontotemporal lobar degeneration. Up to 96% of pathologically verified AD patients were correctly classified using whole brain images. Data from different centres were successfully combined achieving comparable results from the separate analyses. Importantly, data from one centre could be used to train a support vector machine to accurately differentiate AD and normal ageing scans obtained from another centre with different subjects and different scanner equipment. Patients with mild, clinically probable AD and age/sex matched controls were correctly separated in 89% of cases which is compatible with published diagnosis rates in the best clinical centres. This method correctly assigned 89% of patients with post-mortem confirmed diagnosis of either AD or frontotemporal lobar degeneration to their respective group. Our study leads to three conclusions: Firstly, support vector machines successfully separate patients with AD from healthy aging subjects. Secondly, they perform well in the differential diagnosis of two different forms of dementia. Thirdly, the method is robust and can be generalized across different centres. This suggests an important role for computer based diagnostic image analysis for clinical practice.
Resumo:
Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics) is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.
Resumo:
The classical binary classification problem is investigatedwhen it is known in advance that the posterior probability function(or regression function) belongs to some class of functions. We introduceand analyze a method which effectively exploits this knowledge. The methodis based on minimizing the empirical risk over a carefully selected``skeleton'' of the class of regression functions. The skeleton is acovering of the class based on a data--dependent metric, especiallyfitted for classification. A new scale--sensitive dimension isintroduced which is more useful for the studied classification problemthan other, previously defined, dimension measures. This fact isdemonstrated by performance bounds for the skeleton estimate in termsof the new dimension.
Resumo:
The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.
Resumo:
The main objective of the research is to link granular physics with the modelling of rock avalanches. Laboratory experiments consist to find a convenient granular material, i.e. grainsize and physical behaviour, and testing it on simple slope geometry. When the appropriate sliding material is selected, we attempted to model the debris avalanche and the spreading on a slope with different substratum to understand the relationship between the volume and the reach angle, i.e. angle of the line joining the top of the scar and the end of the deposit. For a better understanding of the mass spreading, the deposits are scanned with a laser scanner. Datasets are compared to see how the grain size and volume influence a debris avalanche. The relationship between the roughness and grainsize of the substratum shows that the spreading of the sliding mass is increased when the roughness of the substratum starts to be equivalent or greater than the grainsize of the flowing mass. The runout distance displays a more complex relationship, because a long runout distance implies that grains are less spread. This means that if the substratum is too rough the distance diminishes, as well if it is too smooth because the effect on the apparent friction decreases. Up to now our findings do not permit to validate any previous model (Melosh, 1987; Bagnold 1956).
Resumo:
The principal objective of the knot theory is to provide a simple way of classifying and ordering all the knot types. Here, we propose a natural classification of knots based on their intrinsic position in the knot space that is defined by the set of knots to which a given knot can be converted by individual intersegmental passages. In addition, we characterize various knots using a set of simple quantum numbers that can be determined upon inspection of minimal crossing diagram of a knot. These numbers include: crossing number; average three-dimensional writhe; number of topological domains; and the average relaxation value
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées
Resumo:
The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.