821 resultados para Molybdenum alloys
Resumo:
Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved photoluminescence (TRPL). The fast redshift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(-t/tau)(beta)], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed quantum dots or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent 8 on the temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered quantum dots. Furthermore, the localized states are found to have OD density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature.
Resumo:
\Si1-yCy alloys with carbon composition of 0.5 at.% were successfully grown on n-Si(100) substrate by solid phase epitaxy recraystallization. The result was presented in this paper. With the help of the SiO2 capping layer, rather uniform carbon profile in amorphous Si layer was obtained by dual-energy implantation. Since ion-flow was small and implantation time was long enough, the emergency of beta-SiC was avoided and the dynamic annealing effect was depressed. The pre-amorphization of the Si substrate increased the fraction of the substitutions carbon and the two-step annealing reduced point defects. As a result, Si1-yCy alloys with high quality was recrystallized on Si substrate.
Resumo:
We have measured photoluminescence of ZnSxTe1-x alloys (x > 0.7) at 300 K and under hydrostatic pressure up to 7 GPa. The spectra contain only a broad emission band under excitation of the 406.7 nm line. Its pressure coefficients are 47, 62 and 45 meV/GPa for x = 0.98, 0.92 and 0.79 samples, which are about 26%, 7% and 38% smaller than that of the band gap in the corresponding alloys. The Stokes shifts between emission and absorption of the bands were calculated by fitting the pressure dependence of the emission intensity, being 0.29, 0.48 and 0.13 eV for the three samples, respectively. The small pressure coefficient and large Stokes shift indicate that the emission band observed in our samples may correspond to the Te isoelectronic center in the ZnSxTe1-x alloy.
Density functional theory study of triangular molybdenum sulfide nanocluster and CO adsorption on it
Resumo:
Molybdenum L-shell X-rays were produced by Xeq+ (q = 25-30) bombardment at low energies from 2.65 to 4.55 keV/amu (350-600 keV). We observed a kinetic energy threshold of Mo L-shell ionization down to 2.65-3.03 keV/amu (350-400 keV). The charge state effect of the incident ions was not observed which shows that the ions were neutralized, reaching an equilibrium charge state and losing their initial charge state memory before production of L-shell vacancies resulted in X-ray production. The experimental ionization cross sections were compared with those from Binary Encounter Approximation theory. Taking into account projectile deflection in the target nuclear Coulomb field, the ionization cross section of Mo L-shell near the kinetic energy threshold was well described. (C) 2010 Published by Elsevier B.V.