995 resultados para Linear transverse waves
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
The problem of finding a feasible solution to a linear inequality system arises in numerous contexts. In [12] an algorithm, called extended relaxation method, that solves the feasibility problem, has been proposed by the authors. Convergence of the algorithm has been proven. In this paper, we onsider a class of extended relaxation methods depending on a parameter and prove their convergence. Numerical experiments have been provided, as well.
Resumo:
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.
Resumo:
PURPOSE: To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator. METHODS AND MATERIALS: Between 2004 and 2008, 11 children (15 eyes) with macular and/or papillary retinoblastoma were treated with SRT. The mean age was 19 months (range, 2-111). Of the 15 eyes, 7, 6, and 2 were classified as International Classification of Intraocular Retinoblastoma Group B, C, and E, respectively. The delivered dose of SRT was 50.4 Gy in 28 fractions using a dedicated micromultileaf collimator linear accelerator. RESULTS: The median follow-up was 20 months (range, 13-39). Local control was achieved in 13 eyes (87%). The actuarial 1- and 2-year local control rates were both 82%. SRT was well tolerated. Late adverse events were reported in 4 patients. Of the 4 patients, 2 had developed focal microangiopathy 20 months after SRT; 1 had developed a transient recurrence of retinal detachment; and 1 had developed bilateral cataracts. No optic neuropathy was observed. CONCLUSIONS: Linear accelerator-based SRT for papillary and/or macular retinoblastoma in children resulted in excellent tumor control rates with acceptable toxicity. Additional research regarding SRT and its intrinsic organ-at-risk sparing capability is justified in the framework of prospective trials.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models firstly with the generalized linear model concept, then by localizing. Distances between individuals are the only predictor information needed to fit these models. Therefore they are applicable to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. Models can be fitted and analysed with the R package dbstats, which implements several distancebased prediction methods.
Resumo:
In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher-Kolmogorov-Petrovskii-Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C2 classical regularity, but also the existence of discontinuous entropy travelling wave solutions.
Resumo:
Little information exists regarding the effect of several obesity markers on blood pressure (BP) levels in youth. Transverse study including 2494 boys and 2589 girls. Height, weight and waist were measured according to the international criteria and body fat (BF) by bioimpedance. BP was measured by an automated device. Hypertension was defined using sex-specific, age-specific and height-specific observation-points. Body mass index (BMI) and waist were positively related with systolic blood pressure (SBP) and diastolic blood pressure (DBP) and heart rate in both sexes, whereas the relationships with BF were less consistent. Stepwise linear regression analysis showed that BMI was positively related with SBP and DBP in both sexes, whereas BF was negatively related with SBP in both sexes and with heart rate in boys only; finally, waist was positively related with SBP in boys and heart rate in girls. Age and heart rate-adjusted values of SBP and DBP increased with BMI: for SBP, 117+/-1, 123+/-1 and 124+/-1 mmHg in normal, overweight and obese boys, respectively; corresponding values for girls were 111+/-1, 114+/-1 and 116+/-2 mmHg (mean+/-SE, P<0.001). Overweight and obese boys had an odds ratio for being hypertensive of 2.26 (95% confidence interval: 1.79-2.86) and 3.36 (2.32-4.87), respectively; corresponding values for girls were 1.58 (confidence interval 1.25-1.99) and 2.31 (1.53-3.50). BMI, not BF or waist, is consistently and independently related to BP levels in children; overweight and obesity considerably increase the risk of hypertension.
Resumo:
Analyzing the relationship between the baseline value and subsequent change of a continuous variable is a frequent matter of inquiry in cohort studies. These analyses are surprisingly complex, particularly if only two waves of data are available. It is unclear for non-biostatisticians where the complexity of this analysis lies and which statistical method is adequate.With the help of simulated longitudinal data of body mass index in children,we review statistical methods for the analysis of the association between the baseline value and subsequent change, assuming linear growth with time. Key issues in such analyses are mathematical coupling, measurement error, variability of change between individuals, and regression to the mean. Ideally, it is better to rely on multiple repeated measurements at different times and a linear random effects model is a standard approach if more than two waves of data are available. If only two waves of data are available, our simulations show that Blomqvist's method - which consists in adjusting for measurement error variance the estimated regression coefficient of observed change on baseline value - provides accurate estimates. The adequacy of the methods to assess the relationship between the baseline value and subsequent change depends on the number of data waves, the availability of information on measurement error, and the variability of change between individuals.
Resumo:
BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60-80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.
Resumo:
OBJECTIVE: To assess whether lambda waves are elicited by watching television (TV) and their association with demographical and EEG features. METHODS: We retrospectively compared lambda wave occurrence in prolonged EEG monitorings of outpatients who were allowed to watch TV and in standard EEGs recorded in TV-free rooms. All EEGs were interpreted by the same two electroencephalographers. RESULTS: Of 2,072 standard EEG reports, 36 (1.7 %) mentioned lambda waves versus 46 (32.2%) of 143 prolonged EEG monitoring reports (P < 0.001). Multivariable comparison of prolonged EEG monitorings and standard EEGs disclosed that recordings performed in rooms with a TV (odds ratio, 20.6; 95% confidence interval, 4.8-88.0) and normal EEGs (odds ratio, 3.03; 95% confidence interval, 1.5-6.25) were independently associated with lambda waves. In the prolonged EEG monitoring group, all recordings with lambda waves also had positive occipital sharp transients of sleep. CONCLUSIONS: Watching TV likely represents a powerful and previously unrecognized stimulus for lambda waves. Furthermore, this study confirms the benign nature of this EEG variant and its strong association with positive occipital sharp transients of sleep.
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations ofcompositions. In other words, they investigated compositions of compositions, wherethe mixing composition follows a logistic Normal distribution (or a perturbationprocess) and the compositions being mixed follow a logistic Normal distribution. Inthis paper, I investigate the extension to situations where the mixing compositionvaries with a number of dimensions. Examples would be where the mixingproportions vary with time or distance or a combination of the two. Practicalsituations include a river where the mixing proportions vary along the river, or acrossa lake and possibly with a time trend. This is illustrated with a dataset similar to thatused in the Aitchison and Bacon-Shone paper, which looked at how pollution in aloch depended on the pollution in the three rivers that feed the loch. Here, I explicitlymodel the variation in the linear combination across the loch, assuming that the meanof the logistic Normal distribution depends on the river flows and relative distancefrom the source origins