930 resultados para Linear optimization approach
Resumo:
In 1991, McNabb introduced the concept of mean action time (MAT) as a finite measure of the time required for a diffusive process to effectively reach steady state. Although this concept was initially adopted by others within the Australian and New Zealand applied mathematics community, it appears to have had little use outside this region until very recently, when in 2010 Berezhkovskii and coworkers rediscovered the concept of MAT in their study of morphogen gradient formation. All previous work in this area has been limited to studying single–species differential equations, such as the linear advection–diffusion–reaction equation. Here we generalise the concept of MAT by showing how the theory can be applied to coupled linear processes. We begin by studying coupled ordinary differential equations and extend our approach to coupled partial differential equations. Our new results have broad applications including the analysis of models describing coupled chemical decay and cell differentiation processes, amongst others.
Resumo:
We propose a new active noise control (ANC) technique. The technique has a feedback structure to have a simple configuration in practical implementation. In this approach, the secondary path is modelled online to ensure convergence of the system as the secondary paths are practically time varying or non-linear. The proposed method consists of two steps: a noise controller which is based on a modified FxLMS algorithm, and a new variable step size (VSS) LMS algorithm which is used to adapt the modelling filter with the secondary path. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Eliminating continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. The computer simulations are presented to show the effectiveness of the proposed method.
Resumo:
Anisotropic damage distribution and evolution have a profound effect on borehole stress concentrations. Damage evolution is an irreversible process that is not adequately described within classical equilibrium thermodynamics. Therefore, we propose a constitutive model, based on non-equilibrium thermodynamics, that accounts for anisotropic damage distribution, anisotropic damage threshold and anisotropic damage evolution. We implemented this constitutive model numerically, using the finite element method, to calculate stress–strain curves and borehole stresses. The resulting stress–strain curves are distinctively different from linear elastic-brittle and linear elastic-ideal plastic constitutive models and realistically model experimental responses of brittle rocks. We show that the onset of damage evolution leads to an inhomogeneous redistribution of material properties and stresses along the borehole wall. The classical linear elastic-brittle approach to borehole stability analysis systematically overestimates the stress concentrations on the borehole wall, because dissipative strain-softening is underestimated. The proposed damage mechanics approach explicitly models dissipative behaviour and leads to non-conservative mud window estimations. Furthermore, anisotropic rocks with preferential planes of failure, like shales, can be addressed with our model.
Resumo:
Critical analysis and problem-solving skills are two graduate attributes that are important in ensuring that graduates are well equipped in working across research and practice settings within the discipline of psychology. Despite the importance of these skills, few psychology undergraduate programmes have undertaken any systematic development, implementation, and evaluation of curriculum activities to foster these graduate skills. The current study reports on the development and implementation of a tutorial programme designed to enhance the critical analysis and problem-solving skills of undergraduate psychology students. Underpinned by collaborative learning and problem-based learning, the tutorial programme was administered to 273 third year undergraduate students in psychology. Latent Growth Curve Modelling revealed that students demonstrated a significant linear increase in self-reported critical analysis and problem-solving skills across the tutorial programme. The findings suggest that the development of inquiry-based curriculum offers important opportunities for psychology undergraduates to develop critical analysis and problem-solving skills.
Resumo:
Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.
Resumo:
A switch-mode assisted linear amplifier (SMALA) combining a linear (Class B) and a switch-mode (Class D) amplifier is presented. The usual single hysteretic controlled half-bridge current dumping stage is replaced by two parallel buck converter stages, in a parallel voltage controlled topology. These operate independently: one buck converter sources current to assist the upper Class B output device, and a complementary converter sinks current to assist the lower device. This topology lends itself to a novel control approach of a dead-band at low power levels where neither class D amplifier assists, allowing the class B amplifier to supply the load without interference, ensuring high fidelity. A 20 W implementation demonstrates 85% efficiency, with distortion below 0.08% measured across the full audio bandwidth at 15 W. The class D amplifier begins assisting at 2 W, and below this value, the distortion was below 0.03%. Complete circuitry is given, showing the simplicity of the additional class D amplifier and its corresponding control circuitry.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.
Resumo:
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques.
Resumo:
Purpose The goal of this work was to set out a methodology for measuring and reporting small field relative output and to assess the application of published correction factors across a population of linear accelerators. Methods and materials Measurements were made at 6 MV on five Varian iX accelerators using two PTW T60017 unshielded diodes. Relative output readings and profile measurements were made for nominal square field sizes of side 0.5 to 1.0 cm. The actual in-plane (A) and cross-plane (B) field widths were taken to be the FWHM at the 50% isodose level. An effective field size, defined as FSeff=A·B, was calculated and is presented as a field size metric. FSeffFSeff was used to linearly interpolate between published Monte Carlo (MC) calculated kQclin,Qmsrfclin,fmsr values to correct for the diode over-response in small fields. Results The relative output data reported as a function of the nominal field size were different across the accelerator population by up to nearly 10%. However, using the effective field size for reporting showed that the actual output ratios were consistent across the accelerator population to within the experimental uncertainty of ±1.0%. Correcting the measured relative output using kQclin,Qmsrfclin,fmsr at both the nominal and effective field sizes produce output factors that were not identical but differ by much less than the reported experimental and/or MC statistical uncertainties. Conclusions In general, the proposed methodology removes much of the ambiguity in reporting and interpreting small field dosimetric quantities and facilitates a clear dosimetric comparison across a population of linacs
Resumo:
This paper presents an efficient algorithm for multi-objective distribution feeder reconfiguration based on Modified Honey Bee Mating Optimization (MHBMO) approach. The main objective of the Distribution feeder reconfiguration (DFR) is to minimize the real power loss, deviation of the nodes’ voltage. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. So the metahuristic algorithm has been applied to this problem. This paper describes the full algorithm to Objective functions paid, The results of simulations on a 32 bus distribution system is given and shown high accuracy and optimize the proposed algorithm in power loss minimization.
Resumo:
A long query provides more useful hints for searching relevant documents, but it is likely to introduce noise which affects retrieval performance. In order to smooth such adverse effect, it is important to reduce noisy terms, introduce and boost additional relevant terms. This paper presents a comprehensive framework, called Aspect Hidden Markov Model (AHMM), which integrates query reduction and expansion, for retrieval with long queries. It optimizes the probability distribution of query terms by utilizing intra-query term dependencies as well as the relationships between query terms and words observed in relevance feedback documents. Empirical evaluation on three large-scale TREC collections demonstrates that our approach, which is automatic, achieves salient improvements over various strong baselines, and also reaches a comparable performance to a state of the art method based on user’s interactive query term reduction and expansion.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.