891 resultados para Linear and multilinear programming
Resumo:
The aim of the study was to see if any relationship between government spending andunemployment could be empirically found. To test if government spending affectsunemployment, a statistical model was applied on data from Sweden. The data was quarterlydata from the year 1994 until 2012, unit-root test were conducted and the variables wheretransformed to its first-difference so ensure stationarity. This transformation changed thevariables to growth rates. This meant that the interpretation deviated a little from the originalgoal. Other studies reviewed indicate that when government spending increases and/or taxesdecreases output increases. Studies show that unemployment decreases when governmentspending/GDP ratio increases. Some studies also indicated that with an already largegovernment sector increasing the spending it could have negative effect on output. The modelwas a VAR-model with unemployment, output, interest rate, taxes and government spending.Also included in the model were a linear and three quarterly dummies. The model used 7lags. The result was not statistically significant for most lags but indicated that as governmentspending growth rate increases holding everything else constant unemployment growth rateincreases. The result for taxes was even less statistically significant and indicates norelationship with unemployment. Post-estimation test indicates that there were problems withnon-normality in the model. So the results should be interpreted with some scepticism.
Resumo:
The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.
Resumo:
A study was carried out to elaborate response surface models using broiler performance data recovered from literature in order to predict performance and elaborate economic analyses. Nineteen studies published between 1995 and 2005 were retrieved using the systematic literature review method. Weight gain and feed conversion data were collected from eight studies that fulfilled the pre-established inclusion criteria, and a response surface model was adjusted using crude protein, environmental temperature, and age as independent variables. The models produced for weight gain (r² = 0.93) and feed conversion (r² = 0.85) were accurate, precise, and not biased. Protein levels, environmental temperature and age showed linear and quadratic effects on weight gain and feed conversion. There was no interaction between protein level and environmental temperature. Age and crude protein showed interaction for weight gain and feed conversion, whereas interaction between age and temperature was detected only for weight gain. It was possible to perform economic analyses to determine maximum profit as a function of the variables that were included in the model. It was concluded that the response surface models are effective to predict the performance of broiler chickens and allow the elaboration of economic analyses to optimize profit.
Resumo:
Data comprising 53,181 calving records were analyzed to estimate the genetic correlation between days to calving (DC), and days to first calving (DFC), and the following traits: scrotal circumference (SC), age at first calving (AFC), and weight adjusted for 550 d of age (W550) in a Nelore herd. (Co)variance components were estimated using the REML method fitting bivariate animal models. The fixed effects considered for DC were contemporary group, month of last calving, and age at breeding season (linear and quadratic effects). Contemporary groups were composed by herd, year, season, and management group at birth; herd and management group at weaning; herd, season, and management group at mating; and sex of calf and mating type (multiple sires, single sire, or AI). In DFC analysis, the same fixed effects were considered excluding the month of last calving. For DC, a repeatability animal model was applied. Noncalvers were not considered in analyses because an attempt to include them, attributing a penalty, did not improve the identification of genetic differences between animals. Heritability estimates ranged from 0.04 to 0.06 for DC, from 0.06 to 0.13 for DFC, from 0.42 to 0.44 for SC, from 0.06 to 0.08 for AFC, and was 0.30 for W550. The genetic correlation estimated between DC and SC was low and negative (-0.10), between DC and AFC was high and positive (0.76), and between DC and W550 was almost null (0.07). Similar results were found for genetic correlation estimates between DFC and SC (-0.14), AFC (0.94), and W550 (-0.02). The genetic correlation estimates indicate that the use of DC in the selection of beef cattle may promote favorable correlated responses to age at first mating and, consequently, higher gains in sexual precocity can be expected.
Resumo:
The spread of the Web boosted the dissemination of Information Systems (IS) based on the Web. In order to support the implementation of these systems, several technologies came up or evolved with this purpose, namely the programming languages. The Technology Acceptance Model TAM (Davis, 1986) was conceived aiming to evaluate the acceptance/use of information technologies by their users. A lot of studies and many applications have used the TAM, however, in the literature it was not found a mention of the use of such model related to the use of programming languages. This study aims to investigate which factors influence the use of programming languages on the development of Web systems by their developers, applying an extension of the TAM, proposed in this work. To do so, a research was done with Web developers in two Yahoo groups: java-br and python-brasil, where 26 Java questionnaires and 39 Python questionnaires were fully answered. The questionnaire had general questions and questions which measured intrinsic and extrinsic factors of the programming languages, the perceived usefulness, the perceived ease of use, the attitude toward the using and the programming language use. Most of the respondents were men, graduate, between 20 and 30 years old, working in the southeast and south regions. The research was descriptive in the sense of its objectives. Statistical tools, descriptive statistics, main components and linear regression analysis were used for the data analysis. The foremost research results were: Java and Python have machine independence, extensibility, generality and reliability; Java and Python are more used by corporations and international organizations than supported by the government or educational institutions; there are more Java programmers than Python programmers; the perceived usefulness is influenced by the perceived ease of use; the generality and the extensibility are intrinsic factors of programming languages which influence the perceived ease of use; the perceived ease of use influences the attitude toward the using of the programming language
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Análise genética de escores de avaliação visual de bovinos com modelos bayesianos de limiar e linear
Resumo:
O objetivo deste trabalho foi comparar as estimativas de parâmetros genéticos obtidas em análises bayesianas uni-característica e bi-característica, em modelo animal linear e de limiar, considerando-se as características categóricas morfológicas de bovinos da raça Nelore. Os dados de musculosidade, estrutura física e conformação foram obtidos entre 2000 e 2005, em 3.864 animais de 13 fazendas participantes do Programa Nelore Brasil. Foram realizadas análises bayesianas uni e bi-características, em modelos de limiar e linear. de modo geral, os modelos de limiar e linear foram eficientes na estimação dos parâmetros genéticos para escores visuais em análises bayesianas uni-características. Nas análises bi-características, observou-se que: com utilização de dados contínuos e categóricos, o modelo de limiar proporcionou estimativas de correlação genética de maior magnitude do que aquelas do modelo linear; e com o uso de dados categóricos, as estimativas de herdabilidade foram semelhantes. A vantagem do modelo linear foi o menor tempo gasto no processamento das análises. Na avaliação genética de animais para escores visuais, o uso do modelo de limiar ou linear não influenciou a classificação dos animais, quanto aos valores genéticos preditos, o que indica que ambos os modelos podem ser utilizados em programas de melhoramento genético.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)