938 resultados para Linear Mixed Integer Multicriteria Optimization
Resumo:
The aim of the work was to study the effect of milking fraction on electrical conductivity of milk (EC) to improve its use in dairy goat mastitis detection using automatic EC measurements during milking. The experiment was carried out on a group of 84 Murciano-Granadina goats (28 primiparous and 56 multiparous). Goats were in the fourth month of lactation. A linear mixed model was used to analyse the relationship between EC or somatic cell count (SCC) of gland milk and parity, mammary gland health status, analysed fraction (first 100 mL=F-1; machine milk=F-2; and stripping milk=F-3) and their first order interactions. Additionally, the mastitis detection characteristics (sensitivity, specificity, positive predictive value and negative predictive value) of SCC and EC were studied at different thresholds.All factors considered were significant for EC and SCC. EC decreased significantly as milking progressed (from F-1 to F-3) in both healthy and infected glands. EC was not significantly different between healthy and infected glands in F-1 and F-2 fractions, but EC of healthy glands (5.01 mS/cm) was significantly lower than in infected glands (5.03 mS/cm) at F-3.Mastitis detection characteristics of EC did not differ amongst studied fractions. The small significant difference of EC between healthy and infected glands obtained in F-3 fraction did not yield better sensitivity results compared to F-1 and F-2. The best EC mastitis detection characteristics were obtained at 5.20 mS/cm threshold (sensitivity of 70% and specificity of 50%). The best SCC mastitis detection characteristics were obtained at 300,000 cells/mL threshold and F-3 fraction (sensitivity of 85% and specificity of 65%).It was concluded that mastitis detection characteristics of EC were similar in the three milking fractions analysed, being slightly better for SCC in F-3 fraction. As shown in previous studies, there are no factors other than the mammary gland health status that affect milk EC and should be considered in the algorithms for mastitis detection to improve the results. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objetivou-se com esse trabalho comparar estimativas de componentes de variâncias obtidas por meio de modelos lineares mistos Gaussianos e Robustos, via Amostrador de Gibbs, em dados simulados. Foram simulados 50 arquivos de dados com 1.000 animais cada um, distribuídos em cinco gerações, em dois níveis de efeito fixo e três valores fenotípicos distintos para uma característica hipotética, com diferentes níveis de contaminação. Exceto para os dados sem contaminação, quando os modelos foram iguais, o modelo Robusto apresentou melhores estimativas da variância residual. As estimativas de herdabilidade foram semelhantes em todos os modelos, mas as análises de regressão mostraram que os valores genéticos preditos com uso do modelo Robusto foram mais próximos dos valores genéticos verdadeiros. Esses resultados sugerem que o modelo linear normal contaminado oferece uma alternativa flexível para estimação robusta em melhoramento genético animal.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It is often necessary to run response surface designs in blocks. In this paper the analysis of data from such experiments, using polynomial regression models, is discussed. The definition and estimation of pure error in blocked designs are considered. It is recommended that pure error is estimated by assuming additive block and treatment effects, as this is more consistent with designs without blocking. The recovery of inter-block information using REML analysis is discussed, although it is shown that it has very little impact if thc design is nearly orthogonally blocked. Finally prediction from blocked designs is considered and it is shown that prediction of many quantities of interest is much simpler than prediction of the response itself.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A lot sizing and scheduling problem from a foundry is considered in which key materials are produced and then transformed into many products on a single machine. A mixed integer programming (MIP) model is developed, taking into account sequence-dependent setup costs and times, and then adapted for rolling horizon use. A relax-and-fix (RF) solution heuristic is proposed and computationally tested against a high-performance MIP solver. Three variants of local search are also developed to improve the RF method and tested. Finally the solutions are compared with those currently practiced at the foundry.
Resumo:
An optimisation technique to solve transmission network expansion planning problem, using the AC model, is presented. This is a very complex mixed integer nonlinear programming problem. A constructive heuristic algorithm aimed at obtaining an excellent quality solution for this problem is presented. An interior point method is employed to solve nonlinear programming problems during the solution steps of the algorithm. Results of the tests, carried out with three electrical energy systems, show the capabilities of the method and also the viability of using the AC model to solve the problem.
Resumo:
The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A branch and bound (B& B) algorithm using the DC model, to solve the power system transmission expansion planning by incorporating the electrical losses in network modelling problem is presented. This is a mixed integer nonlinear programming (MINLP) problem, and in this approach, the so-called fathoming tests in the B&B algorithm were redefined and a nonlinear programming (NLP) problem is solved in each node of the B& B tree, using an interior-point method. Pseudocosts were used to manage the development of the B&B tree and to decrease its size and the processing time. There is no guarantee of convergence towards global optimisation for the MINLP problem. However, preliminary tests show that the algorithm easily converges towards the best-known solutions or to the optimal solutions for all the tested systems neglecting the electrical losses. When the electrical losses are taken into account, the solution obtained using the Garver system is better than the best one known in the literature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents the Benders decomposition technique and Branch and Bound algorithm used in the reactive power planning in electric energy systems. The Benders decomposition separates the planning problem into two subproblems: an investment subproblem (master) and the operation subproblem (slave), which are solved alternately. The operation subproblem is solved using a successive linear programming (SLP) algorithm while the investment subproblem, which is an integer linear programming (ILP) problem with discrete variables, is resolved using a Branch and Bound algorithm especially developed to resolve this type of problem.
Resumo:
In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.