972 resultados para Lane changing decision
Resumo:
Optimal Asset Maintenance decisions are imperative for efficient asset management. Decision Support Systems are often used to help asset managers make maintenance decisions, but high quality decision support must be based on sound decision-making principles. For long-lived assets, a successful Asset Maintenance decision-making process must effectively handle multiple time scales. For example, high-level strategic plans are normally made for periods of years, while daily operational decisions may need to be made within a space of mere minutes. When making strategic decisions, one usually has the luxury of time to explore alternatives, whereas routine operational decisions must often be made with no time for contemplation. In this paper, we present an innovative, flexible decision-making process model which distinguishes meta-level decision making, i.e., deciding how to make decisions, from the information gathering and analysis steps required to make the decisions themselves. The new model can accommodate various decision types. Three industrial case studies are given to demonstrate its applicability.
Resumo:
This is the project report of a leadership project undertaken jointly by the Queensland University of Technology, University of Technology Sydney, and Monash University. Specific project objectives were to: -To build leadership capacity in teaching and learning, and to improve teaching quality in ICT and Engineering disciplines at three leading Australian universities, and -To facilitate the transference of research leadership to T&L leadership, and disseminate this transference model developed through the project within the Engineering and ICT domains to other disciplines and universities.
Resumo:
WHAT: An interactive installation with full body interface, digital projection, multi-touch sensitive screen surfaces, interactive 3D gaming software, motorised dioramas, 4.1 spatial sound & new furniture forms - investigating the cultural dimensions of sustainability through the lens of 'time'. “Time is change, time is finitude. Humans are a finite species. Every decision we make today brings that end closer, or alternatively pushes it further away. Nothing can be neutral”. Tony Fry DETAILS: Each participant/viewer lies comfortably on their back. Directly above them is a semi-transparent Perspex screen that displays projected 3D imagery and is simultaneously sensitive to the lightest of finger touches. Depending upon the ever changing qualities of the projected image on this screen the participant can see through its surface to a series of physical dioramas suspended above, lit by subtle LED spotlighting. This diorama consists of a slowly rotating series of physical environments, which also include several animatronic components, allowing the realtime composition of whimsical ‘landscapes’ of both 'real' and 'virtual' media. Through subtle, non-didactic touch-sensitive interactivity the participant then has influence over both the 3D graphic imagery, the physical movements of the diorama and the 4 channel immersive soundscape, creating an uncanny blend of physical and virtual media. Five speakers positioned around the room deliver a rich interactive soundscape that responds both audibly and physically to interactions.
Resumo:
This article proposes offence-specific guidelines for how prosecutorial discretion should be exercised in cases of voluntary euthanasia and assisted suicide. Similar guidelines have been produced in England and Wales but we consider them to be deficient in a number of respects, including that they lack a set of coherent guiding principles. In light of these concerns, we outline an approach to constructing alternative guidelines that begins with identifying three guiding principles that we argue are appropriate for this purpose: respect for autonomy, the need for high quality prosecutorial decision-making and the importance of public confidence in that decision-making.
Resumo:
The aim of Queensland Health’s ‘Clean hands are life savers’ program is to change the culture and behaviour of healthcare workers related to hand hygiene. Hand hygiene is considered to be the most effective means of preventing pathogen cross-transmission and healthcare-associated infections. Most hospitals throughout Queensland as well as Australia now manage a hand hygiene program to increase the hand hygiene compliance of all healthcare workers. Reports taken from routine hand hygiene observations reveal that doctors are usually less compliant in their hand-washing practices than other healthcare worker groups. The Centre for Healthcare Related Infection Surveillance and Prevention (CHRISP) has attempted to have an impact on this challenging group through their Medical Leadership Initiative. With education as a core component of the program, efforts were made to ensure our future doctors were receiving information that aligned with Queensland Health standards during their formative years at medical school. CHRISP met with university instructors to understand what infection prevention education was currently included in the curriculum and support the introduction of new learning activities that specifically focused on hand hygiene. This prompted change to the existing curriculum and a range of interventions were employed with mixed success. Although met with challenges, methods to integrate more infection prevention teaching were found.
Resumo:
The purpose of Changing Lanes was to question the identity of Brisbane laneways through the collaboration of local stakeholders by promoting design. Community partners provided design briefs for student work from Architecture and Interior Design to be included in a design competition. Shortlisted student projects were featured in the Changing Lanes event during which the winners were announced. In addition to student work from Architecture and Interior Design, the five other disciplines from QUT's School of Design also exhibited samples of student work. The engagement of local stakeholders; architectural practice, interior designers, engineers, and a media and publication agency was fundamental to the success of this event. The design work on display provided creative expression for the potential of Brisbane Laneways to bring communities together through the language of design. An underutilised area of Fortitude Valley was activated through a combination of media including drawings, videos, street furniture, and music.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Resumo:
Power system restoration after a large area outage involves many factors, and the procedure is usually very complicated. A decision-making support system could then be developed so as to find the optimal black-start strategy. In order to evaluate candidate black-start strategies, some indices, usually both qualitative and quantitative, are employed. However, it may not be possible to directly synthesize these indices, and different extents of interactions may exist among these indices. In the existing black-start decision-making methods, qualitative and quantitative indices cannot be well synthesized, and the interactions among different indices are not taken into account. The vague set, an extended version of the well-developed fuzzy set, could be employed to deal with decision-making problems with interacting attributes. Given this background, the vague set is first employed in this work to represent the indices for facilitating the comparisons among them. Then, a concept of the vague-valued fuzzy measure is presented, and on that basis a mathematical model for black-start decision-making developed. Compared with the existing methods, the proposed method could deal with the interactions among indices and more reasonably represent the fuzzy information. Finally, an actual power system is served for demonstrating the basic features of the developed model and method.
Resumo:
Changing environments present a number of challenges to mobile robots, one of the most significant being mapping and localisation. This problem is particularly significant in vision-based systems where illumination and weather changes can cause feature-based techniques to fail. In many applications only sections of an environment undergo extreme perceptual change. Some range-based sensor mapping approaches exploit this property by combining occasional place recognition with the assumption that odometry is accurate over short periods of time. In this paper, we develop this idea in the visual domain, by using occasional vision-driven loop closures to infer loop closures in nearby locations where visual recognition is difficult due to extreme change. We demonstrate successful map creation in an environment in which change is significant but constrained to one area, where both the vanilla CAT-Graph and a Sum of Absolute Differences matcher fails, use the described techniques to link dissimilar images from matching locations, and test the robustness of the system against false inferences.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management in low-voltage distribution networks. This method uses low-cost controllers with low-bandwidth two-way communication installed in custumers’ premises and at distribution transformers to manage the peak load while maximising customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by simulation of three different feeder types.
Resumo:
In recent times concerns about possible adverse effects of early separation and advocacy for individual rights have resulted in a movement away from organizational level policies about the separation of twin children as they enter school. Instead, individualized approaches that focus on the twin children’s characteristics and family perspectives have been proposed. This study, conducted in Australia where all but a few families had choice about the class placement of their twin children, questioned parents (N = 156) about their placement decisions. Results indicated that most parents opted for placement together in the early years of schooling. The choice to separate twins at school entry was associated with parent identification of risk in the twin relationship, while being kept together was associated with parent identification of absence of such risk. The findings are discussed in light of the current evidence against separation, and suggest that parent choices regarding the separation of twin children in the early years are informative to educational policy and practice.
Resumo:
Current diagnostic methods for assessing the severity of articular cartilage degenerative conditions, such as osteoarthritis, are inadequate. There is also a lack of techniques that can be used for real-time evaluation of the tissue during surgery to inform treatment decision and eliminate subjectivity. This book, derived from Dr Afara’s doctoral research, presents a scientific framework that is based on near infrared (NIR) spectroscopy for facilitating the non-destructive evaluation of articular cartilage health relative to its structural, functional, and mechanical properties. This development is a component of the ongoing research on advanced endoscopic diagnostic techniques in the Articular Cartilage Biomechanics Research Laboratory of Professor Adekunle Oloyede at Queensland University of Technology (QUT), Brisbane Australia.
Resumo:
As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. In order to enhance customer satisfaction and their shopping experiences, it has become important to analysis customers reviews to extract opinions on the products that they buy. Thus, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes.
Resumo:
Purpose – The purpose of this paper is to provide a new type of entry mode decision-making model for construction enterprises involved in international business. Design/methodology/approach – A hybrid method combining analytic hierarchy process (AHP) with preference ranking organization method for enrichment evaluations (PROMETHEE) is used to aid entry mode decisions. The AHP is used to decompose the entry mode problem into several dimensions and determine the weight of each criterion. In addition, PROMETHEE method is used to rank candidate entry modes and carry out sensitivity analyses. Findings – The proposed decision-making method is demonstrated to be a suitable approach to resolve the entry mode selection decision problem. Practical implications – The research provides practitioners with a more systematic decision framework and a more precise decision method. Originality/value – The paper sheds light on the further development of entry strategies for international construction markets. It not only introduces a new decision-making model for entry mode decision making, but also provides a conceptual framework with five determinants for a construction company entry mode selection based on the unique properties of the construction industry.