933 resultados para Jeannette (Ship)
Resumo:
Carnival Cruise Line's Fantasy class of cruise ships is the largest group of virtually identical passenger vessels in the history of ocean travel. These ships rep- resent the culmination of Carnival's product development and are a prime reason for the line's current success. The author details the evolution of their design, with emphasis on hotel aspects, through previous ships in the fleet.
Resumo:
The President of Carnival Cruise Lines discusses his company's philosophy and operations as they relate to the "Fun Ship" cruise experience. Carnival, the world's largest cruise line, is positioned as a model in the business.
Resumo:
In this thesis, a numerical program has been developed to simulate the wave-induced ship motions in the time domain. Wave-body interactions have been studied for various ships and floating bodies through forced motion and free motion simulations in a wide range of wave frequencies. A three-dimensional Rankine panel method is applied to solve the boundary value problem for the wave-body interactions. The velocity potentials and normal velocities on the boundaries are obtained in the time domain by solving the mixed boundary integral equations in relation to the source and dipole distributions. The hydrodynamic forces are calculated by the integration of the instantaneous hydrodynamic pressures over the body surface. The equations of ship motion are solved simultaneously with the boundary value problem for each time step. The wave elevation is computed by applying the linear free surface conditions. A numerical damping zone is adopted to absorb the outgoing waves in order to satisfy the radiation condition for the truncated free surface. A numerical filter is applied on the free surface for the smoothing of the wave elevation. Good convergence has been reached for both forced motion simulations and free motion simulations. The computed added-mass and damping coefficients, wave exciting forces, and motion responses for ships and floating bodies are in good agreement with the numerical results from other programs and experimental data.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
The greater part of this Monograph is devoted to detailed descriptions of 1426 samples of deposits from the floor of the Atlantic Ocean stored in the Challenger Office, Edinburgh, which had been collected during thirty-five cruising expeditions between 1857 and 1911. The remaining part discusses the results of the work. The work of examining and describing in detail this abundant mass of material was in progress when the late Sir JOHN MURRAY met his death in March 1914. By that time about three-fourths of the descriptive work had been completed under his supervision. Sir John's trustees arranged for the completion of the descriptive work by Mr Chumley, and this was done in the Challenger Office during the two succeeding years. Later, after he had removed to Glasgow, Mr Chumley prepared the notes discussing the results. The trustees have pleasure in recording, on the suggestion of Mr Chumley, the courtesy of Dr G. W. Lee of the Geological Survey of Scotland, for help in determining many of the rarer mineral particles contained in the deposits.
Resumo:
Ferromanganese concretions from Grand Lake and Ship Harbour Lake in Nova Scotia and Mosque Lake in Ontario are most common in water 0.5 to 2 m deep. X-ray diffraction studies show the ferromanganese portions of the concretions to he amorphous. Petrographic and electron probe studies of the ferromanganese material reveal chemical banding of iron and manganese. Bulk chemical analyses indicate that the Fe:Mn ratios of concretions from different sites within a single lake are similar, whereas concretions from different lakes have characteristic Fe:Mn ratios. Trace element concs are different in different lakes and are generally several orders of magnitude less than those of oceanic nodules.