981 resultados para Iron-containing intermetallics
Resumo:
In view of the recent interest in compounds containing M-SH units, an organotin hydrosulfide compound, Me2Sn(SH)(O2CMe) (1) was prepared by controlled hydrolysis of the diorganotin thioacetate. Under similar mild hydrolytic conditions the corresponding benzoate could not be isolated. Instead, the thiobenzoate complex, Me2Sn(SOCPh)(2) (3) was obtained in excellent yields indicating that there was no hydrolysis. Both 1 and 3 were characterized by X-ray crystallography. Some properties of the polymeric compound 1, such as spectral, electrical conductivity and NLO response were also studied. The reactivity and properties were explained using density functional calculations.
Resumo:
A single administration of 2-allyl-2-isopropylacetamide, a porphyrinogenic drug, enhanced the 32P-labelling of nucleoplasmic as well as cytoplasmic poly(A)-containing RNA in rat liver. The synthesis of total microsomal RNA is only marginally increased under these conditions. The drug enhances the labelling of a variety of cytoplasmic poly(A)-containing RNA species, and this effect is counteracted by the simultaneous administration of haemin. 2-Allyl-2-isopropylacetamide also enhanced the release of RNA from the nucleus to the cytoplasm.
Resumo:
Polypeptides with alternating L- and D-amino acid residues can take up stereochemically satisfactory coaxial double-helical structures, both antiparallel and parallel, which are stabilized by systematic interchain NH O hydrogen bonds. Semiempirical energy calculations over allowed regions of conformational space have yielded the characteristics of these double-helices. There are four possible types of antiparallel double-helices - A3, A4, A5 and A6, with n, the number of LD peptide units per turn, around 2.8, 3.6, 4.5 and 5.5 respectively, while for the parallel double-helices there are two types, P3 and P4, having similar helical parameters as in A3 and A4. The hydrogen-bonding scheme restricts the pitch in all the models to the narrow range of 10.0 to 11.5 Å. All these helices have large central cores whose radii increase proportionately with n. In this respect, A3 and A4 are suitable models for the structure of gramicidin A. In terms of their relative energies, antiparallel double-helices are marginally more stable than those with parallel strands. Our results indicate that the energy differences amongst the members in the antiparallel family are not significant and thus provide an explanation for the polymorphism reported for poly(γ-benzyl-LD-glutamate).
Resumo:
Many types of micro-organisms inhabit iron ore deposits contributing to biogenic formation and conversion of iron oxides and associated minerals. Bacteria such as Paenibacillus polymyxa arc capable of significantly altering the surface chemical behaviour of iron ore minerals such as haematite, alumina, calcite and silica. Differing mineral surface affinities of bacterial cells and metabolic products such as proteins and polysaccharides can be utilised to induce their flotation or flocculation. Mineral-specific bioreagents such as proteins are generated when bacteria are grown in the presence of haematite, alumina, calcite and silica. Alumina-grown bacterial cells and proteins separated from such cells were found to be capable of separating alumina from haematite. Biodegradation of iron ore flotation collectors such as amines and oleates can be effectively utilised to achieve environmental control in iron ore processing mills.
Resumo:
The filtrate obtained by interacting a known amount of rice husk with deionised, Milli-Q water was assessed as a carbon source and nutrient medium for the growth of Desulfotomaculum nigrificans, a typical sulfate-reducing bacterium. The filtrate contained essential growth constituents such as magnesium, potassium, phosphorous apart from calcium, sodium, chloride and sulfate ions. Based on the 1H and 13C NMR characterization studies, the organic composition of the components dissolved from the rice husk, was found to be: (i) 66% lignocellulosic material, (ii) 24% xylose + arabinose and (iii) 10% galactose. The growth studies indicated a 15-fold increase in the bacterial cell number in about 20 days. Nearly 81% and 66% reduction in sulfate concentration could be achieved in about 28 days, from the solutions containing initial sulfate concentrations of 550 mg/l and 1200 mg/l respectively. In both the cases studied, the iron concentration could be reduced by over 85%.
Resumo:
Viruses are biological entities able to replicate only within their host cells. Accordingly, entry into the host is a crucial step of the virus life-cycle. The focus of this study was the entry of bacterial membrane-containing viruses into their host cells. In order to reach the site of replication, the cytoplasm of the host, bacterial viruses have to traverse the host cell envelope, which consists of several distinct layers. Lipid membrane is a common feature among animal viruses but not so frequently observed in bacteriophages. There are three families of icosahedral bacteriophages that contain lipid membranes. These viruses belong to families Cystoviridae, Tectiviridae, and Corticoviridae. During the course of this study the entry mechanisms of phages representing the three viral families were investigated. We employed a range of microbiological, biochemical, molecular biology and microscopy techniques that allowed us to dissect phage entry into discrete steps: receptor binding, penetration through the outer membrane, crossing the peptidoglycan layer and interaction with the cytoplasmic membrane. We determined that bacteriophages belonging to the Cystoviridae, Tectiviridae, and Corticoviridae viral families use completely different strategies to penetrate into their host cells.
Resumo:
The omega amino acids have a larger degree of conformational variability than the alpha amino acids, leading to a greater diversity of backbone structures in peptides and polypeptides. The synthetic accessibility of chiral beta-amino acids and the recent observation of novel helical folds in oligomers of cyclic beta-amino acids has led to renewed interest in the stereochemistry of omega-amino acid containing peptides. This review focuses on the conformational characteristics of the polymethylene chain in omega-amino acid segments and surveys structural features in peptides established by X-ray diffraction. The literature on polymers of achiral omega-amino acids (nylon derivatives) and chiral, substituted derivatives derived from trifunctional alpha-amino acids, reveals that while sheet-like, intermolecular hydrogen bonded structures are formed by the former, folded helices appear favoured by the latter. omega-Amino acids promise to expand the repertoire of peptide folds.
Resumo:
In this thesis three icosahedral lipid-containing double-stranded (ds) deoxyribonucleic acid (DNA) bacteriophages have been studied: PRD1, Bam35 and P23-77. The work focuses on the entry, exit and structure of the viruses. PRD1 is the type member of the Tectiviridae family, infecting a variety of Gram-negative bacteria. The PRD1 receptor binding complex, consisting of the penton protein P31, the spike protein P5 and the receptor binding protein P2 recognizes a specific receptor on the host surface. In this study we found that the transmembrane protein P16 has an important stabilization function as the fourth member of the receptor binding complex and protein P16 may have a role in the formation of a tubular membrane structure, which is needed in the ejection of the genome into the cell. Phage Bam35 (Tectiviridae), which infects Gram-positive hosts, has been earlier found to resemble PRD1 in morphology and genome organization The uncharacterized early and late events in the Bam35 life cycle were studied by electrochemical methods. Physiological changes in the beginning of the infection were found to be similar in both lysogenic and nonlysogenic cell lines, Bam35 inducing a temporal decrease of membrane voltage and K+ efflux. At the end of the infection cycle physiological changes were observed only in the nonlysogenic cell line. The strong K+ efflux 40 min after infection and the induced premature cell lysis propose that Bam35 has a similar holin-endolysin lysis system to that of PRD1. Thermophilic icosahedral dsDNA Thermus phages P23-65H, P23-72 and P23-77 have been proposed to belong to the Tectiviridae family. In this study these phages were compared to each other. Analysis of structural protein patterns and stability revealed these phages to be very similar but not identical. The most stable of the studied viruses, P23-77, was further analyzed in more detail. Cryo-electron microscopy and three-dimensional image reconstruction was used to determine the structure of virus to 14 Å resolution. Results of thin layer chromatography for neutral lipids together with analysis of the three dimensional reconstruction of P23-77 virus particle revealed the presence of an internal lipid membrane. The overall capsid architecture of P23-77 is similar to PRD1 and Bam35, but most closely it resembles the structure of the capsid of archaeal virus SH1. This complicates the classification of dsDNA, internal lipid-containing icosahedral viruses.
Resumo:
Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were epsilon-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-rayphotoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces epsilon-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.
Resumo:
In this study we used electro-spray ionization mass-spectrometry to determine phospholipid class and molecular species compositions in bacteriophages PM2, PRD1, Bam35 and phi6 as well as their hosts. To obtain compositional data of the individual leaflets, phospholipid transbilayer distribution in the viral membranes was studied. We found that 1) the membranes of all studied bacteriophage are enriched in PG as compared to the host membranes, 2) molecular species compositions in the phage and host membranes are similar, and 3) phospholipids in the viral membranes are distributed asymmetrically with phosphatidylglycerol enriched in the outer leaflet and phosphatidylethanolamine in the inner one (except Bam35). Alternative models for selective incorporation of phospholipids to phages and for the origins of the asymmetric phospholipid transbilayer distribution are discussed. Notably, the present data are also useful when constructing high resolution structural models of bacteriophages, since diffraction methods cannot provide a detailed structure of the membrane due to high motility of the lipids and lack of symmetric organization of membrane proteins.
Resumo:
Ferrous iron bio-oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket-type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet-type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket-type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio-oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics.
Resumo:
Natural peptide libraries often contain cyclodepsipeptides containing alpha or beta hydroxy residues. Extracts of fungal hyphae of Isaria yield a microheterogenous cyclodepsipeptide mixture in which two classes of molecules can be identified by mass spectral fragmentation of negative ions. In the case of isaridins, which contain an alpha-hydroxy residue and a beta-amino acid residue, a characteristic product ion corresponding to a neutral loss of 72 Da is obtained. hi addition, neutral loss of water followed by a 72 Da loss is also observed. Two distinct modes of fragmentation rationalize the observed product ion distribution. The neutral loss of 72 Da has also been obtained for a roseotoxin component, which is also an alpha-hydroxy residue containing cyclodepsipeptide. In the case of isariins, which contain a beta-hydroxy acid residue, ring opening and subsequent loss of the terminal residue as an unsaturated ketene fragment, rationalizes the observed product ion formation. Fragmentation of negative ions provide characteristic neutral losses, which are diagnostic of the presence of alpha-hydroxy or beta-hydroxy residues.
Resumo:
The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors sigma(H) and sigma(F). We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing sigma(A) or sigma(B), under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.