974 resultados para Interterminal interference
Resumo:
A numerical renormalization-group study of the conductance through a quantum wire containing noninteracting electrons side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the current through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When comparable currents flow through the two channels, the conductance is nearly temperature independent in the Kondo regime, and Fano antiresonances in the fixed-temperature plots of the conductance as a function of the dot-energy signal interference between them. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.
Resumo:
By numerically calculating the relevant electromagnetic fields and charge current densities, we show how local charges and currents near subwavelength structures govern light transmission through subwavelength apertures in a real metal film. The illumination of a single aperture generates surface waves; and in the case of slits, generates them with high efficiency and with a phase close to - pi with respect to a reference standing wave established at the metal film front facet. This phase shift is due to the direction of induced charge currents running within the slit walls. The surface waves on the entrance facet interfere with the standing wave. This interference controls the profile of the transmission through slit pairs as a function of their separation. We compare the calculated transmission profile for a two-slit array to simple interference models and measurements [Phys. Rev. B 77(11), 115411 (2008)]. (C) 2011 Optical Society of America
Resumo:
Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.
Resumo:
The uptake of ascorbate by neuroblastoma cells using a ruthenium oxide hexacyanoferrate (RuOHCF)-modified carbon fiber disc (CFD) microelectrode (r = 14.5 mu m) was investigated. By use of the proposed electrochemical sensor the amperometric determination of ascorbate was performed at 0.0 V in minimum essential medium (MEM, pH = 7.2) with a limit of detection of 25 mu mol L(-1). Under the optimum experimental conditions, no interference from MEM constituents and reduced glutathione (used to prevent the oxidation of ascorbate during the experiments) was noticed. The stability of the RuOHCF-modified electrode response was studied by measuring the sensitivity over an extended period of time (120 h), a decrease of around 10% being noticed at the end of the experiment. The rate of ascorbate uptake by control human neuroblastoma SH-SY5Y cells, and cells transfected with wild-type Cu,Zn-superoxide dismutase (SOD WT) or with a mutant typical of familial amyotrophic lateral sclerosis (SOD G93A), was in agreement with the level of oxidative stress in these cells. The usefulness of the RuOHCF-modified microelectrode for in vivo monitoring of ascorbate inside neuroblastoma cells was also demonstrated.
Resumo:
An environmentally friendly analytical procedure with high sensitivity for determination of carbaryl pesticide in natural waters was developed. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. A long pathlength (100 cm) flow cell based on a liquid core waveguide (LCW) was employed to increase the sensitivity in detection of the indophenol formed from the reaction between carbaryl and p-aminophenol (PAP). A clean-up step based on cloud-point extraction was explored to remove the interfering organic matter, avoiding the use of toxic organic solvents. A linear response was observed within the range 5-200 mu g L(-1) and the detection limit, coefficient of variation and sampling rate were estimated as 1.7 mu g L(-1) (99.7% confidence level), 0.7% (n=20) and 55 determinations per hour, respectively. The reagents consumption was 1.9 mu g of PAP and 5.7 mu g of potassium metaperiodate, with volume of 2.6 mL of effluent per determination. The proposed procedure was selective for the determination of carbaryl, without interference from other carbamate pesticides. Recoveries within 84% and 104% were estimated for carbaryl spiked to water samples and the results obtained were also in agreement with those found by a batch spectrophotometric procedure at the 95% confidence level. The waste of the analytical procedure was treated with potassium persulphate and ultraviolet irradiation, yielding a colorless residue and a decrease of 94% of total organic carbon. In addition, the residue after treatment was not toxic for Vibrio fischeri bacteria. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.
Resumo:
Artesian confined aquifers do not need pumping energy, and water from the aquifer flows naturally at the wellhead. This study proposes correcting the method for analyzing flowing well tests presented by Jacob and Lohman (1952) by considering the head losses due to friction in the well casing. The application of the proposed correction allowed the determination of a transmissivity (T = 411 m(2)/d) and storage coefficient (S = 3 x 10(-4)) which appear to be representative for the confined Guarani Aquifer in the study area. Ignoring the correction due to head losses in the well casing, the error in transmissivity evaluation is about 18%. For the storage coefficient the error is of 5 orders of magnitude, resulting in physically unacceptable value. The effect of the proposed correction on the calculated radius of the cone of depression and corresponding well interference is also discussed.
Resumo:
The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem arrangement is investigated by experiments. A typical WIV response is characterized by a build-up of amplitude persisting to high reduced velocities; this is different from a typical vortex-induced vibration (VIV) response, which occurs in a limited resonance range. We suggest that WIV of the downstream cylinder is excited by the unsteady vortex-structure interactions between the body and the upstream wake. Coherent vortices interfering with the downstream cylinder induce fluctuations in the fluid force that are not synchronized with the motion. A favourable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations. If the unsteady vortices are removed from the wake of the upstream body then WIV will not be excited. An experiment performed in a steady shear flow turned out to be central to the understanding of the origin of the fluid forces acting on the downstream cylinder.
Resumo:
The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p = 5, 10, 15d, and h = 0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10000, and the reduced velocity varies up to 21. The cases with h = 0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h = 0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p = 10d and h = 0.1d straked cylinder. The p = 10d and h = 0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p = 10d and h = 0.2d cylinder is immersed in the wake of an upstream fixed plain cylinder, it loses its effectiveness compared with the isolated case. Although the oscillations have significant amplitude, they are limited, which is a different behaviour from that of a tandem configuration with two plain cylinders. For this particular case, the amplitude response monotonically increases for all gaps, except one, a trait usually found in galloping-like oscillations. SDPIV results for the tandem arrangements show alternating vortex shedding and oscillatory wake. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Some recent results regarding the global dynamical behaviour of the wake of circular cylinders and airfoils with massive separation are reviewed in this paper. In order to investigate the effect of interference, the three-dimensional instability modes are analysed for the flow around two circular cylinders in tandem. In the same way, the flow around a stalled airfoil is investigated in order to provide a better understanding of the three-dimensional characteristics of wakes forming downstream of a lifting body with massive separation. These results are compared with those found for an isolated cylinder. Some fundamental differences among these flows are discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The crosstalk phenomenon consists in recording the volume-conducted electromyographic activity of muscles other than that under study. This interference may impair the correct interpretation of the results in a variety of experiments. A new protocol is presented here for crosstalk assessment between two muscles based on changes in their electrical activity following a reflex discharge in one of the muscles in response to nerve stimulation. A reflex compound muscle action potential (H-reflex) was used to induce a silent period in the muscle that causes the crosstalk, called here the remote muscle. The rationale is that if the activity recorded in the target muscle is influenced by a distant source (the remote muscle) a silent period observed in the electromyogram (EMG) of the remote muscle would coincide with a decrease in the EMG activity of the target muscle. The new crosstalk index is evaluated based on the root mean square (RMS) values of the EMGs obtained in two distinct periods (background EMG and silent period) of both the remote and the target muscles. In the present work the application focused on the estimation of the degree of crosstalk from the soleus muscle to the tibialis anterior muscle during quiet stance. However, the technique may be extended to other pairs of muscles provided a silent period may be evoked in one of them. (C) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Resumo:
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.
Resumo:
The well-known modified Garabedian-Mcfadden (MGM) method is an attractive alternative for aerodynamic inverse design, for its simplicity and effectiveness (P. Garabedian and G. Mcfadden, Design of supercritical swept wings, AIAA J. 20(3) (1982), 289-291; J.B. Malone, J. Vadyak, and L.N. Sankar, Inverse aerodynamic design method for aircraft components, J. Aircraft 24(2) (1987), 8-9; Santos, A hybrid optimization method for aerodynamic design of lifting surfaces, PhD Thesis, Georgia Institute of Technology, 1993). Owing to these characteristics, the method has been the subject of several authors over the years (G.S. Dulikravich and D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, in AIAA paper 99-0185, AIAA Aerospace Sciences Meeting, Reno, NV, January 1999; D.H. Silva and L.N. Sankar, An inverse method for the design of transonic wings, in 1992 Aerospace Design Conference, No. 92-1025 in proceedings, AIAA, Irvine, CA, February 1992, 1-11; W. Bartelheimer, An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings, AIAA Inc., 1995). More recently, a hybrid formulation and a multi-point algorithm were developed on the basis of the original MGM. This article discusses applications of those latest developments for airfoil and wing design. The test cases focus on wing-body aerodynamic interference and shock wave removal applications. The DLR-F6 geometry is picked as the baseline for the analysis.