969 resultados para Integral membrane proteins
Resumo:
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.
Resumo:
The tegument surface of the adult schistosome, bounded by a normal plasma membrane overlain by a secreted membranocalyx, holds the key to understanding how schistosomes evade host immune responses. Recent advances in mass spectrometry (MS), and the sequencing of the Schistosoma mansoni transcriptome/genome, have facilitated schistosome proteomics. We detached the tegument from the worm body and enriched its surface membranes by differential extraction, before subjecting the preparation to liquid chromatography-based proteomics to identify its constituents. The most exposed proteins on live worms were labelled with impearmeant biotinylation reagents, and we also developed methods to isolate the membranocalyx for analysis. We identified transporters for sugars, amino acids, inorganic ions and water, which confirm the importance of the tegument plasma membrane in nutrient acquisition and solute balance. Enzymes, including phosphohydrolases, esterases and carbonic anhydrase were located with their catalytic domains external to the plasma membrane, while five tetraspanins, annexin and dysferlin were implicated in membrane architecture. In contrast, few parasite proteins could be assigned to the membranocalyx but mouse immune response proteins, including three immunoglobulins and two complement factors, were detected, plus host membrane proteins such as CD44, integrin and a complement regulatory protein, testifying to the acquisitive properties of the secreted bilayer.
Resumo:
The circumsporozoite protein (CSP), a major antigen of Plasmodium falciparum, was expressed in the slime mold Dictyostelium discoideum. Fusion of the parasite protein to a leader peptide derived from Dictyostelium contact site A was essential for expression. The natural parasite surface antigen, however, was not detected at the slime mold cell surface as expected but retained intracellularly. Removal of the last 23 amino acids resulted in secretion of CSP, suggesting that the C-terminal segment of the CSP, rather than an ectoplasmic domain, was responsible for retention. Cell surface expression was obtained when the CSP C-terminal segment was replaced by the D. discoideum contact site A glycosyl phosphatidylinositol anchor signal sequence. Mice were immunized with Dictyostelium cells harboring CSP at their surface. The raised antibodies recognized two different regions of the CSP. Anti-sporozoite titers of these sera were equivalent to anti-peptide titers detected by enzyme-linked immunosorbent assay. Thus, cell surface targeting of antigens can be obtained in Dictyostelium, generating sporozoite-like cells having potentials for vaccination, diagnostic tests, or basic studies involving parasite cell surface proteins.
Resumo:
Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses
Resumo:
The molecular mechanisms underlying lymphocyte extravasation remain poorly characterized. We have recently identified junctional adhesion molecule-2 (JAM-2), and have shown that antibodies to JAM-2 stain high endothelial venules (HEVs) within lymph nodes and Peyer patches of adult mice. Here we show that mouse lymphocytes migrate in greater numbers across monolayers of endothelioma cells transfected with JAM-2. The significance of these findings to an understanding of both normal and pathologic lymphocyte extravasation prompted us to clone the human homologue of JAM-2. We herein demonstrate that an anti-JAM-2 antibody, or a soluble JAM-2 molecule, blocks the transmigration of primary human peripheral blood leukocytes across human umbilical vein endothelial cells expressing endogenous JAM-2. Furthermore, we show that JAM-2 is expressed on HEVs in human tonsil and on a subset of human leukocytes, suggesting that JAM-2 plays a central role in the regulation of transendothelial migration.
Resumo:
TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.
Resumo:
Human B cell-activating factor (BAFF) induces mouse surface IgM+ B cells of the immature type from bone marrow and of the immature types 1 and 2 from spleen, as well as of the mature type from spleen to increased longevity in tissue culture. BAFF does so polyclonally and without inducing proliferation in any of these B cell subpopulations. BAFF induces phenotypic and functional maturation of immature to mature B cells so that all immature cells loose C1qRp (AA4.1, 493) expression and type 1 immature cells up-regulate IgD, CD21 and CD23. Immature B cells of types 1 and 2, upon pre-incubation with BAFF, change their reactiveness to Ig-specific antibodies so that they no longer enter apoptosis but now proliferate. However, BAFF does not seem to overcome negative selection of developing immature B cells in vitro.
Resumo:
The Bacteroides fragilis ATCC strain was grown in a synthetic media with contrasting redox potential (Eh) levels [reduced (-60 mV) or oxidised (+100mV)] and their adhesion capacity to extracellular matrix components was evaluated. The strain was capable of adhering to laminin, fibronectin, fibronectin + heparan sulphate and heparan sulphate. A stronger adherence to laminin after growing the strain under oxidising conditions was verified. Electron microscopy using ruthenium red showed a heterogeneous population under this condition. Dot-blotting analyses confirmed stronger laminin recognition by outer membrane proteins of cells cultured at a higher Eh. Using a laminin affinity column, several putative laminin binding proteins obtained from the cultures kept under oxidising (60 kDa, 36 kDa, 25 kDa and 15 kDa) and reducing (60 kDa) conditions could be detected. Our results show that the expression of B. fragilis surface components that recognise laminin are influenced by Eh variations.
Resumo:
BACKGROUND: Autoimmune diseases with elevated circulating autoantibodies drive tissue damage and the onset of disease. The Fcγ receptors bind IgG subtypes modulating the clearance of circulating immune complexes (CIC). The inner ear damage in Ménière's disease (MD) could be mediated by an immune response driven by CIC. We examined single-nucleotide polymorphism (SNPs) in the CD16A and CD32 genes in patients with MD which may determine a Fcγ receptor with lower binding to CIC. METHODS: The functional CD16A (FcγRIIIa*559A > C, rs396991) and CD32A (FcγRIIa*519A > G, rs1801274) SNPs were analyzed using PCR-based TaqMan Genotyping Assay in two cohorts of 156 mediterranean and 112 Galicia patients in a case-control study. Data were analyzed by χ2 with Fisher's exact test and Cochran-Armitage trend test (CATT). CIC were measured by ELISA for C1q-binding CIC. RESULTS: Elevated CIC were found in 7% of patients with MD during the intercrisis period. No differences were found in the allelic frequency for rs396991 or rs1801274 in controls subjects when they were compared with patients with MD from the same geographic area. However, the frequency of AA and AC genotypes of CD16A (rs396991) differed among mediterranean and Galicia controls (Fisher's test, corrected p = 6.9 × 10-4 for AA; corrected p = 0.02 for AC). Although genotype AC of the CD16A receptor was significantly more frequent in mediterranean controls than in patients, [Fisher's test corrected p = 0.02; OR = 0.63 (0.44-0.91)], a genetic additive effect for the allele C was not observed (CATT, p = 0.23). Moreover, no differences were found in genotype frequencies for rs396991 between patients with MD and controls from Galicia (CATT, p = 0.14). The allelic frequency of CD32 (rs1801274) was not different between patients and controls either in mediterranean (p = 0.51) or Galicia population (p = 0.11). CONCLUSIONS: Elevated CIC are not found in most of patients with MD. Functional polymorphisms of CD16A and CD32 genes are not associated with onset of MD.
Resumo:
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10(-4), OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10(-5), OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.
Resumo:
INTRODUCTION: The objective was to investigate the potential implication of the IL18 gene promoter polymorphisms in the susceptibility to giant-cell arteritis GCA). METHODS: In total, 212 patients diagnosed with biopsy-proven GCA were included in this study. DNA from patients and matched controls was obtained from peripheral blood. Samples were genotyped for the IL18-137 G>C (rs187238), the IL18-607 C>A (rs1946518), and the IL18-1297 T>C (rs360719) gene polymorphisms with polymerase chain reaction, by using a predesigned TaqMan allele discrimination assay. RESULTS: No significant association between the IL18-137 G>C polymorphism and GCA was found. However, the IL18 -607 allele A was significantly increased in GCA patients compared with controls (47.8% versus 40.9% in patients and controls respectively; P = 0.02; OR, 1.32; 95% CI, 1.04 to 1.69). It was due to an increased frequency of homozygosity for the IL18 -607 A/A genotype in patients with GCA (20.4%) compared with controls (13.4%) (IL18 -607 A/A versus IL18 -607 A/C plus IL18 -607 C/C genotypes: P = 0.04; OR, 1.59; 95% CI, 1.02 to 2.46). Also, the IL18-1297 allele C was significantly increased in GCA patients (30.7%) compared with controls (23.0%) (P = 0.003; OR, 1.48; 95% CI, 1.13 to 1.95). In this regard, an increased susceptibility to GCA was observed in individuals carrying the IL18-1297 C/C or the IL18-1297 C/T genotypes compared with those carrying the IL18-1297 T/T genotype (IL18-1297 C/C plus IL18-1297 T/C versus IL18-1297 T/T genotype in GCA patients compared with controls: P = 0.005; OR, 1.61; 95% CI, 1.15 to 2.25). We also found an additive effect of the IL18 -1297 and -607 polymorphisms with TLR4 Asp299Gly polymorphism. The OR for GCA was 1.95 for combinations of genotypes with one or two risk alleles, whereas carriers of three or more risk alleles have an OR of 3.7. CONCLUSIONS: Our results show for the first time an implication of IL18 gene-promoter polymorphisms in the susceptibility to biopsy-proven GCA. In addition, an additive effect between the associated IL18 and TLR4 genetic variants was observed.
Resumo:
BACKGROUND: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. METHODS: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. RESULTS: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S), while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. CONCLUSIONS: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.
Resumo:
Introduction: Testing for HIV tropism is recommended before prescribing a chemokine receptor blocker. To date, in most European countries HIV tropism is determined using a phenotypic test. Recently, new data have emerged supporting the use of a genotypic HIV V3-loop sequence analysis as the basis for tropism determination. The European guidelines group on clinical management of HIV-1 tropism testing was established to make recommendations to clinicians and virologists. Methods: We searched online databases for articles from Jan 2006 until March 2010 with the terms: tropism or CCR5-antagonist or CCR5 antagonist or maraviroc or vicriviroc. Additional articles and/or conference abstracts were identified by hand searching. This strategy identified 712 potential articles and 1240 abstracts. All were reviewed and finally 57 papers and 42 abstracts were included and used by the panel to reach a consensus statement. Results: The panel recommends HIV-tropism testing for the following indications: i) drug-naïve patients in whom toxicity or limited therapeutic options are foreseen; ii) patients experiencing therapy failure whenever a treatment change is considered. Both the phenotypic Enhanced Trofile assay (ESTA) and genotypic population sequencing of the V3-loop are recommended for use in clinical practice. Although the panel does not recommend one methodology over another it is anticipated that genotypic testing will be used more frequently because of its greater accessibility, lower cost and shorter turnaround time. The panel also provides guidance on technical aspects and interpretation issues. If using genotypic methods, triplicate PCR amplification and sequencing testing is advised using the G2P interpretation tool (clonal model) with an FPR of 10%. If the viral load is below the level of reliable amplification, proviral DNA can be used, and the panel recommends performing triplicate testing and use of an FPR of 10%. If genotypic DNA testing is not performed in triplicate the FPR should be increased to 20%. Conclusions: The European guidelines on clinical management of HIV-1 tropism testing provide an overview of current literature, evidence-based recommendations for the clinical use of tropism testing and expert guidance on unresolved issues and current developments. Current data support both the use of genotypic population sequencing and ESTA for co-receptor tropism determination. For practical reasons genotypic population sequencing is the preferred method in Europe.
Resumo:
BACKGROUND The etiology of Ulcerative Colitis (UC) and Crohn's Disease (CD), considered together as Inflammatory Bowel Diseases (IBD), involves environmental and genetic factors. Although some genes are already known, the genetics underlying these diseases is complex and new candidates are continuously emerging. The CD209 gene is located in a region linked previously to IBD and a CD209 functional polymorphism (rs4804803) has been associated to other inflammatory conditions. Our aim was to study the potential involvement of this CD209 variant in IBD susceptibility. METHODS We performed a case-control study with 515 CD patients, 497 UC patients and 731 healthy controls, all of them white Spaniards. Samples were typed for the CD209 single nucleotide polymorphism (SNP) rs4804803 by TaqMan technology. Frequency comparisons were performed using chi2 tests. RESULTS No association between CD209 and UC or CD was observed initially. However, stratification of UC patients by HLA-DR3 status, a strong protective allele, showed that carriage of the CD209_G allele could increase susceptibility in the subgroup of HLA-DR3-positive individuals (p = 0.03 OR = 1.77 95% CI 1.04-3.02, vs. controls). CONCLUSION A functional variant in the CD209 gene, rs4804803, does not seem to be influencing Crohn's disease susceptibility. However, it could be involved in the etiology or pathology of Ulcerative Colitis in HLA-DR3-positive individuals but further studies are necessary.
Resumo:
BACKGROUND: Intravitreal neovascular diseases, as in ischemic retinopathies, are a major cause of blindness. Because inflammatory mechanisms influence vitreal neovascularization and cyclooxygenase (COX)-2 promotes tumor angiogenesis, we investigated the role of COX-2 in ischemic proliferative retinopathy. METHODS AND RESULTS: We describe here that COX-2 is induced in retinal astrocytes in human diabetic retinopathy, in the murine and rat model of ischemic proliferative retinopathy in vivo, and in hypoxic astrocytes in vitro. Specific COX-2 but not COX-1 inhibitors prevented intravitreal neovascularization, whereas prostaglandin E2, mainly via its prostaglandin E receptor 3 (EP3), exacerbated neovascularization. COX-2 inhibition induced an upregulation of thrombospondin-1 and its CD36 receptor, consistent with the observed antiangiogenic effects of COX-2 inhibition; EP3 stimulation reversed effects of COX-2 inhibitors on thrombospondin-1 and CD36. CONCLUSIONS: These findings point to an important role for COX-2 in ischemic proliferative retinopathy, as in diabetes.