901 resultados para Information Retrieval, Weblogs, Decision Support
Resumo:
The paper presents the development of a decision support system for the management of geotechnical and environmental risks in oil pipelines using a geographical information system. The system covers a 48.5 km long section of the So Paulo to Brasilia (OSBRA) oil pipeline, which crosses three municipalities in the northeast region of the So Paulo state (Brazil) and represents an area of 205.8 km(2). The spatial database was created using geo-processing procedures, surface and intrusive investigations and geotechnical reports. The risk assessment was based mainly on qualitative models (relative numeric weights and multicriteria decision analysis) and considered pluvial erosion, slope movements, soil corrosion and third party activities. The maps were produced at a scale of 1:10,000.
Resumo:
This paper addresses the problem of ensuring compliance of business processes, implemented within and across organisational boundaries, with the constraints stated in related business contracts. In order to deal with the complexity of this problem we propose two solutions that allow for a systematic and increasingly automated support for addressing two specific compliance issues. One solution provides a set of guidelines for progressively transforming contract conditions into business processes that are consistent with contract conditions thus avoiding violation of the rules in contract. Another solution compares rules in business contracts and rules in business processes to check for possible inconsistencies. Both approaches rely on a computer interpretable representation of contract conditions that embodies contract semantics. This semantics is described in terms of a logic based formalism allowing for the description of obligations, prohibitions, permissions and violations conditions in contracts. This semantics was based on an analysis of typical building blocks of many commercial, financial and government contracts. The study proved that our contract formalism provides a good foundation for describing key types of conditions in contracts, and has also given several insights into valuable transformation techniques and formalisms needed to establish better alignment between these two, traditionally separate areas of research and endeavour. The study also revealed a number of new areas of research, some of which we intend to address in near future.
Resumo:
A Geographic Information System (GIS) was used to model datasets of Leyte Island, the Philippines, to identify land which was suitable for a forest extension program on the island. The datasets were modelled to provide maps of the distance of land from cities and towns, land which was a suitable elevation and slope for smallholder forestry and land of various soil types. An expert group was used to assign numeric site suitabilities to the soil types and maps of site suitability were used to assist the selection of municipalities for the provision of extension assistance to smallholders. Modelling of the datasets was facilitated by recent developments of the ArcGIS® suite of computer programs and derivation of elevation and slope was assisted by the availability of digital elevation models (DEM) produced by the Shuttle Radar Topography (SRTM) mission. The usefulness of GIS software as a decision support tool for small-scale forestry extension programs is discussed.
Resumo:
Dherte PM, Negrao MPG, Mori Neto S, Holzhacker R, Shimada V, Taberner P, Carmona MJC - Smart Alerts: Development of a Software to Optimize Data Monitoring. Background and objectives: Monitoring is useful for vital follow-ups and prevention, diagnosis, and treatment of several events in anesthesia. Although alarms can be useful in monitoring they can cause dangerous user`s desensitization. The objective of this study was to describe the development of specific software to integrate intraoperative monitoring parameters generating ""smart alerts"" that can help decision making, besides indicating possible diagnosis and treatment. Methods: A system that allowed flexibility in the definition of alerts, combining individual alarms of the parameters monitored to generate a more elaborated alert system was designed. After investigating a set of smart alerts, considered relevant in the surgical environment, a prototype was designed and evaluated, and additional suggestions were implemented in the final product. To verify the occurrence of smart alerts, the system underwent testing with data previously obtained during intraoperative monitoring of 64 patients. The system allows continuous analysis of monitored parameters, verifying the occurrence of smart alerts defined in the user interface. Results: With this system a potential 92% reduction in alarms was observed. We observed that in most situations that did not generate alerts individual alarms did not represent risk to the patient. Conclusions: Implementation of software can allow integration of the data monitored and generate information, such as possible diagnosis or interventions. An expressive potential reduction in the amount of alarms during surgery was observed. Information displayed by the system can be oftentimes more useful than analysis of isolated parameters.
Resumo:
Formal Concept Analysis is an unsupervised machine learning technique that has successfully been applied to document organisation by considering documents as objects and keywords as attributes. The basic algorithms of Formal Concept Analysis then allow an intelligent information retrieval system to cluster documents according to keyword views. This paper investigates the scalability of this idea. In particular we present the results of applying spatial data structures to large datasets in formal concept analysis. Our experiments are motivated by the application of the Formal Concept Analysis idea of a virtual filesystem [11,17,15]. In particular the libferris [1] Semantic File System. This paper presents customizations to an RD-Tree Generalized Index Search Tree based index structure to better support the application of Formal Concept Analysis to large data sources.
Resumo:
Seasonal climate forecasting offers potential for improving management of crop production risks in the cropping systems of NE Australia. But how is this capability best connected to management practice? Over the past decade, we have pursued participative systems approaches involving simulation-aided discussion with advisers and decision-makers. This has led to the development of discussion support software as a key vehicle for facilitating infusion of forecasting capability into practice. In this paper, we set out the basis of our approach, its implementation and preliminary evaluation. We outline the development of the discussion support software Whopper Cropper, which was designed for, and in close consultation with, public and private advisers. Whopper Cropper consists of a database of simulation output and a graphical user interface to generate analyses of risks associated with crop management options. The charts produced provide conversation pieces for advisers to use with their farmer clients in relation to the significant decisions they face. An example application, detail of the software development process and an initial survey of user needs are presented. We suggest that discussion support software is about moving beyond traditional notions of supply-driven decision support systems. Discussion support software is largely demand-driven and can compliment participatory action research programs by providing cost-effective general delivery of simulation-aided discussions about relevant management actions. The critical role of farm management advisers and dialogue among key players is highlighted. We argue that the discussion support concept, as exemplified by the software tool Whopper Cropper and the group processes surrounding it, provides an effective means to infuse innovations, like seasonal climate forecasting, into farming practice. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
When shopping for apparel, many consumers seek advice from friends and family or store personnel. In-store kiosk systems might serve as an alternative decision support system. In the present study we address the key question of how such kiosk systems are evaluated by consumers. We conducted three focus group discussions with regular apparel shoppers aged between 23 and 39 years. In sum, qualitative information from 15 participants was subject to a qualitative content analysis with the aim of gaining a more comprehensive understanding of how apparel shoppers experience the shopping process. Getting a more in-depth understanding of the needs and wishes associated with the apparel shopping process gives a basis for evaluating the potential acceptance of electronic decision support systems in apparel shopping. Although our study is exploratory in nature, we are able to draw an initial picture of how kiosk systems could be used in apparel shopping.
Resumo:
Neste artigo é apresentado um Sistema de Apoio à Decisão Espacial (SADE) onde os decisores podem facilmente definir diferentes tipos de problemas espaciais recorrendo a diferentes categorias de objetos, pré-definidas ou a definir, associando- lhes características com ou sem dependência espacial, e indicando formas de interferência (impactos) entre essas caracte- rísticas/propriedades. A análise espacial para determinação ou avaliação de configurações alternativas para a localização de diferentes tipos de ocorrências espaciais será feita através da utilização interativa do SADE de acordo com conjuntos de regras intrínsecas aos vários elementos gráficos (objetos, categorias, características, impactos) utilizados na definição dos problemas. O teste à generalidade representativa e analítica do SADE proposto é efectuado recorrendo a um problema concreto, suficientemente específico e complexo, relativo à aplicação de modelos gaussianos para o estudo da dispersão atmosférica de eventuais poluentes resultantes do tratamento de resíduos sólidos. A região em estudo está limitada, neste exemplo, ao município de Coimbra, Portugal. Para este município estão acessíveis, e são utilizados, os dados demográficos ao nível da secção de voto (censos oficiais) e, como tal, é possível a realização de um estudo realístico do impacto com populações humanas.
Resumo:
Urban regeneration is more and more a “universal issue” and a crucial factor in the new trends of urban planning. It is no longer only an area of study and research; it became part of new urban and housing policies. Urban regeneration involves complex decisions as a consequence of the multiple dimensions of the problems that include special technical requirements, safety concerns, socio-economic, environmental, aesthetic, and political impacts, among others. This multi-dimensional nature of urban regeneration projects and their large capital investments justify the development and use of state-of-the-art decision support methodologies to assist decision makers. This research focuses on the development of a multi-attribute approach for the evaluation of building conservation status in urban regeneration projects, thus supporting decision makers in their analysis of the problem and in the definition of strategies and priorities of intervention. The methods presented can be embedded into a Geographical Information System for visualization of results. A real-world case study was used to test the methodology, whose results are also presented.
Resumo:
The results from the need to develop methodologies for performing cost analysis in developing countries, principally in the region of Latin America, were studied. It, furthermore, serves to generate knowledge from an economic evaluation in order to support decision-making related to the organization of health systems, particularly in the efficient use of resources which are allocated for the provision of medical services. Two chronic diseases (breast cancer and cardiac valve disease) and two infections (enteritis and bronchopneumonia) were selected for the study. The results recommend the use of a valid methodology for economic cost analysis of any disease to be studied and the use of this information in the decision-making process.
Resumo:
O trabalho que a seguir se apresenta tem como objectivo descrever a criação de um modelo que sirva de suporte a um sistema de apoio à decisão sobre o risco inerente à execução de projectos na área das Tecnologias de Informação (TI) recorrendo a técnicas de mineração de dados. Durante o ciclo de vida de um projecto, existem inúmeros factores que contribuem para o seu sucesso ou insucesso. A responsabilidade de monitorizar, antever e mitigar esses factores recai sobre o Gestor de Projecto. A gestão de projectos é uma tarefa difícil e dispendiosa, consome muitos recursos, depende de numerosas variáveis e, muitas vezes, até da própria experiência do Gestor de Projecto. Ao ser confrontado com as previsões de duração e de esforço para a execução de uma determinada tarefa, o Gestor de Projecto, exceptuando a sua percepção e intuição pessoal, não tem um modo objectivo de medir a plausibilidade dos valores que lhe são apresentados pelo eventual executor da tarefa. As referidas previsões são fundamentais para a organização, pois sobre elas são tomadas as decisões de planeamento global estratégico corporativo, de execução, de adiamento, de cancelamento, de adjudicação, de renegociação de âmbito, de adjudicação externa, entre outros. Esta propensão para o desvio, quando detectada numa fase inicial, pode ajudar a gerir melhor o risco associado à Gestão de Projectos. O sucesso de cada projecto terminado foi qualificado tendo em conta a ponderação de três factores: o desvio ao orçamentado, o desvio ao planeado e o desvio ao especificado. Analisando os projectos decorridos, e correlacionando alguns dos seus atributos com o seu grau de sucesso o modelo classifica, qualitativamente, um novo projecto quanto ao seu risco. Neste contexto o risco representa o grau de afastamento do projecto ao sucesso. Recorrendo a algoritmos de mineração de dados, tais como, árvores de classificação e redes neuronais, descreve-se o desenvolvimento de um modelo que suporta um sistema de apoio à decisão baseado na classificação de novos projectos. Os modelos são o resultado de um extensivo conjunto de testes de validação onde se procuram e refinam os indicadores que melhor caracterizam os atributos de um projecto e que mais influenciam o risco. Como suporte tecnológico para o desenvolvimento e teste foi utilizada a ferramenta Weka 3. Uma boa utilização do modelo proposto possibilitará a criação de planos de contingência mais detalhados e uma gestão mais próxima para projectos que apresentem uma maior propensão para o risco. Assim, o resultado final pretende constituir mais uma ferramenta à disposição do Gestor de Projecto.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.
Resumo:
Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization.