980 resultados para Imaging Spectrometer Data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 +/- 16.3 years; MACT: 37.4 +/- 8.2 years) and postoperative interval (MFX: 33.0 +/- 17.3 months; MACT: 32.0 +/- 17.2 months). The Delta relaxation rate (DeltaR1) for repair tissue and normal hyaline cartilage and the relative DeltaR1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean DeltaR1 for MFX was 1.07 +/- 0.34 versus 0.32 +/- 0.20 at the intact control site, and for MACT, 1.90 +/- 0.49 compared to 0.87 +/- 0.44, which resulted in a relative DeltaR1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formerly proposed concept for magnetization transfer imaging (MTI) using balanced steady-state free precession (SSFP) image acquisitions is in this work extended to nonbalanced protocols. This allows SSFP-based MTI of targets with high susceptibility variation (such as the musculoskeletal system), or at ultra-high magnetic fields (where balanced SSFP suffers from considerable off-resonance related image degradations). In the first part, SSFP-based MTI in human brain is analyzed based on magnetization transfer ratio (MTR) histograms. High correlations are observed among all different SSFP MTI protocols and thereby ensure proper conceptual extension to nonbalanced SSFP. The second part demonstrates SSFP-based MTI allowing fast acquisition of high resolution volumetric MTR data from human brain and cartilage at low (1.5T) to ultra-high (7.0T) magnetic fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate whether proposed diagnostic criteria applied to magnetic resonance (MR) images of patients with laryngeal and hypopharyngeal carcinoma may be used to distinguish neoplastic from inflammatory involvement of the laryngeal cartilages. MATERIALS AND METHODS: The radiologic and histopathologic data in 121 consecutive patients with primary squamous cell carcinoma of the larynx (n = 63) or hypopharynx (n = 58) who underwent MR imaging before laryngectomy formed the basis of this retrospective study. Patient consent for retrospective chart review was waived by the institutional review board. All laryngectomy specimens were processed with a dedicated histopathologic whole-organ slice technique. MR images were evaluated by two readers according to established ("old") and proposed ("new") diagnostic criteria on the basis of the signal intensity behavior of cartilage on T2-weighted images and contrast material-enhanced T1-weighted images compared with that of the adjacent tumor. Specifically, with the new criteria, T2-weighted or postcontrast T1-weighted cartilage signal intensity greater than that of the adjacent tumor was considered to indicate inflammation, and signal intensity similar to that of the adjacent tumor was considered to indicate neoplastic invasion. The results of the MR image interpretation were compared with the histologic reference standard. RESULTS: The area under the receiver operating characteristic curve for the new criteria (0.94) was nominally but significantly larger than that for the old criteria (0.92) (P = .01). Overall specificity was significantly improved (82% for new vs 74% for old criteria, P < .001) and was greatest for the thyroid cartilage (75% for new vs 54% for old criteria, P < .001) with the new criteria. The sensitivities of the established and the proposed criteria were identical. CONCLUSION: The proposed MR imaging criteria enable improved differentiation of neoplastic cartilage invasion from peritumoral inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magmatic volatiles play a crucial role in volcanism, from magma production at depth to generation of seismic phenomena to control of eruption style. Accordingly, many models of volcano dynamics rely heavily on behavior of such volatiles. Yet measurements of emission rates of volcanic gases have historically been limited, which has restricted model verification to processes on the order of days or longer. UV cameras are a recent advancement in the field of remote sensing of volcanic SO2 emissions. They offer enhanced temporal and spatial resolution over previous measurement techniques, but need development before they can be widely adopted and achieve the promise of integration with other geophysical datasets. Large datasets require a means by which to quickly and efficiently use imagery to calculate emission rates. We present a suite of programs designed to semi-automatically determine emission rates of SO2 from series of UV images. Extraction of high temporal resolution SO2 emission rates via this software facilitates comparison of gas data to geophysical data for the purposes of evaluating models of volcanic activity and has already proven useful at several volcanoes. Integrated UV camera and seismic measurements recorded in January 2009 at Fuego volcano, Guatemala, provide new insight into the system’s shallow conduit processes. High temporal resolution SO2 data reveal patterns of SO2 emission rate relative to explosions and seismic tremor that indicate tremor and degassing share a common source process. Progressive decreases in emission rate appear to represent inhibition of gas loss from magma as a result of rheological stiffening in the upper conduit. Measurements of emission rate from two closely-spaced vents, made possible by the high spatial resolution of the camera, help constrain this model. UV camera measurements at Kilauea volcano, Hawaii, in May of 2010 captured two occurrences of lava filling and draining within the summit vent. Accompanying high lava stands were diminished SO2 emission rates, decreased seismic and infrasonic tremor, minor deflation, and slowed lava lake surface velocity. Incorporation of UV camera data into the multi-parameter dataset gives credence to the likelihood of shallow gas accumulation as the cause of such events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been used to quantify SO2 emissions from passively degassing volcanoes. This dissertation explores ASTER’s capability to detect SO2 with satellite validation, enhancement techniques and extensive processing of images at a variety of volcanoes. ASTER is compared to the Mini UV Spectrometer (MUSe), a ground based instrument, to determine if reasonable SO2 fluxes can be quantified from a plume emitted from Lascar, Chile. The two sensors were in good agreement with ASTER proving to be a reliable detector of SO2. ASTER illustrated the advantages of imaging a plume in 2D, with better temporal resolution than the MUSe. SO2 plumes in ASTER imagery are not always discernible in the raw TIR data. Principal Component Analysis (PCA) and Decorrelation Stretch (DCS) enhancement techniques were compared to determine how well they highlight a variety of volcanic plumes. DCS produced a consistent output and the composition of the plumes was easy to identify from explosive eruptions. As the plumes became smaller and lower in altitude they became harder to distinguish using DCS. PCA proved to be better at identifying smaller low altitude plumes. ASTER was used to investigate SO2 emissions at Lascar, Chile. Activity at Lascar has been characterized by cyclic behavior and persistent degassing (Matthews et al. 1997). Previous studies at Lascar have primarily focused on changes in thermal infrared anomalies, neglecting gas emissions. Using the SO2 data along with changes in thermal anomalies and visual observations it is evident that Lascar is at the end an eruptive cycle that began in 1993. Declining gas emissions and crater temperatures suggest that the conduit is sealing. ASTER and the Ozone Monitoring Instrument (OMI) were used to determine the annual contribution of SO2 to the troposphere from the Central and South American volcanic arcs between 2000 and 2011. Fluxes of 3.4 Tg/a for Central America and 3.7 Tg/a for South America were calculated. The detection limits of ASTER were explored. The results a proved to be interesting, with plumes from many of the high emitting volcanoes, such as Villarrica, Chile, not being detected by ASTER.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a technical development study approved by the institutional ethics committee, the feasibility of fast diffusion-weighted imaging as a replacement for conventional magnetic resonance (MR) imaging sequences (short inversion time inversion recovery [STIR] and T1-weighted spin echo [SE]) and positron emission tomography (PET)/computed tomography (CT) in the detection of skeletal metastases from prostate cancer was evaluated. MR imaging and carbon 11 ((11)C) choline PET/CT data from 11 consecutive prostate cancer patients with bone metastases were analyzed. Diffusion-weighted imaging appears to be equal, if not superior, to STIR and T1-weighted SE sequences and equally as effective as (11)C-choline PET/CT in detection of bone metastases in these patients. Diffusion-weighted imaging should be considered for further evaluation and comparisons with PET/CT for comprehensive whole-body staging and restaging in prostate and other cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-invasive imaging methods are increasingly entering the field of forensic medicine. Facing the intricacies of classical neck dissection techniques, postmortem imaging might provide new diagnostic possibilities which could also improve forensic reconstruction. The aim of this study was to determine the value of postmortem neck imaging in comparison to forensic autopsy regarding the evaluation of the cause of death and the analysis of biomechanical aspects of neck trauma. For this purpose, 5 deceased persons (1 female and 4 male, mean age 49.8 years, range 20-80 years) who had suffered odontoid fractures or atlantoaxial distractions with or without medullary injuries, were studied using multislice computed tomography (MSCT), magnetic resonance imaging (MRI) and subsequent forensic autopsy. Evaluation of the findings was performed by radiologists, forensic pathologists and neuropathologists. The cause of death could be established radiologically in three of the five cases. MRI data were insufficient due to metal artefacts in one case, and in another, ascending medullary edema as the cause of delayed death was only detected by histological analysis. Regarding forensic reconstruction, the imaging methods were superior to autopsy neck exploration in all cases due to the post-processing possibilities of viewing the imaging data. In living patients who suffer medullary injury, follow-up MRI should be considered to exclude ascending medullary edema.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: In fetal ultrasound imaging, teaching and experience are of paramount importance to improve prenatal detection rates of fetal abnormalities. Yet both aspects depend on exposure to normal and, in particular, abnormal 'specimens'. We aimed to generate a number of simple virtual reality (VR) objects of the fetal central nervous system for use as educational tools. METHODS: We applied a recently proposed algorithm for the generation of fetal VR object movies to the normal and abnormal fetal brain and spine. Interactive VR object movies were generated from ultrasound volume data from normal fetuses and fetuses with typical brain or spine anomalies. Pathognomonic still images from all object movies were selected and annotated to enable recognition of these features in the object movies. RESULTS: Forty-six virtual reality object movies from 22 fetuses (two with normal and 20 with abnormal brains) were generated in an interactive display format (QuickTime) and key images were annotated. The resulting .mov files are available for download from the website of this journal. CONCLUSIONS: VR object movies can be generated from educational ultrasound volume datasets, and may prove useful for teaching and learning normal and abnormal fetal anatomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrating evidence from different imaging modalities is important to overcome specific limitations of any given imaging method, such as insensitivity of the EEG to unsynchronized neural events, or the lack of fMRI sensitivity to events of low metabolic demand. Processes that are visible in one modality may be related in a nontrivial way to other processes visible in another modality and insight may only be obtained by integrating both methods through a common analysis. For example, brain activity at rest seems to be at least partly determined by an interaction of cortical rhythms (visible to EEG but not to fMRI) with sub-cortical activity (visible to fMRI, but usually not to EEG without averaging). A combination of EEG and fMRI data during rest may thus be more informative than the sum of two separate analyses in both modalities. Integration is also an important source of converging evidence about specific aspects and general principles of neural functions and their dysfunctions in certain pathologies. This is because not only electrical, but also energetic, biochemical, hemodynamic and metabolic processes characterize neural states and functions, and because brain structure provides crucial constraints upon neural functions. Focusing on multimodal integration of functional data should not distract from the privileged status of the electric field as the primary direct, noninvasive real-time measure of neural transmission. The preceding chapters illustrate how electrical neuroimaging has turned scalp EEG into an imaging modality which directly captures the full temporal dynamics of neural activity in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Delayed enhancement (DE) MRI can assess the fibrotic substrate of scar-related VT. MDCT has the advantage of inframillimetric spatial resolution and better 3D reconstructions. We sought to evaluate the feasibility and usefulness of integrating merged MDCT/MRI data in 3D-mapping systems for structure-function assessment and multimodal guidance of VT mapping and ablation. METHODS Nine patients, including 3 ischemic cardiomyopathy (ICM), 3 nonischemic cardiomyopathy (NICM), 2 myocarditis, and 1 redo procedure for idiopathic VT, underwent MRI and MDCT before VT ablation. Merged MRI/MDCT data were integrated in 3D-mapping systems and registered to high-density endocardial and epicardial maps. Low-voltage areas (<1.5 mV) and local abnormal ventricular activities (LAVA) during sinus rhythm were correlated to DE at MRI, and wall-thinning (WT) at MDCT. RESULTS Endocardium and epicardium were mapped with 391 ± 388 and 1098 ± 734 points per map, respectively. Registration of MDCT allowed visualization of coronary arteries during epicardial mapping/ablation. In the idiopathic patient, integration of MRI data identified previously ablated regions. In ICM patients, both DE at MRI and WT at MDCT matched areas of low voltage (overlap 94 ± 6% and 79 ± 5%, respectively). In NICM patients, wall-thinning areas matched areas of low voltage (overlap 63 ± 21%). In patients with myocarditis, subepicardial DE matched areas of epicardial low voltage (overlap 92 ± 12%). A total number of 266 LAVA sites were found in 7/9 patients. All LAVA sites were associated to structural substrate at imaging (90% inside, 100% within 18 mm). CONCLUSION The integration of merged MDCT and DEMRI data is feasible and allows combining substrate assessment with high-spatial resolution to better define structure-function relationship in scar-related VT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Little data is available on noninvasive MRI-based assessment of renal function during upper urinary tract (UUT) obstruction. In this study, we determined whether functional multiparametric kidney MRI is able to monitor treatment response in acute unilateral UUT obstruction. MATERIAL AND METHODS Between 01/2008 and 01/2010, 18 patients with acute unilateral UUT obstruction due to calculi were prospectively enrolled to undergo kidney MRI with conventional, blood oxygen level-dependent (BOLD) and diffusion-weighted (DW) sequences on emergency admission and after release of obstruction. Functional imaging parameters of the obstructed and contralateral unobstructed kidneys derived from BOLD (apparent spin relaxation rate [R2*]) and DW (total apparent diffusion coefficient [ADCT], pure diffusion coefficient [ADCD] and perfusion fraction [FP]) sequences were assessed during acute UUT obstruction and after its release. RESULTS During acute obstruction, R2* and FP values were lower in the cortex (p=0.020 and p=0.031, respectively) and medulla (p=0.012 and p=0.190, respectively) of the obstructed compared to the contralateral unobstructed kidneys. After release of obstruction, R2* and FP values increased both in the cortex (p=0.016 and p=0.004, respectively) and medulla (p=0.071 and p=0.044, respectively) of the formerly obstructed kidneys to values similar to those found in the contralateral kidneys. ADCT and ADCD values did not significantly differ between obstructed and contralateral unobstructed kidneys during or after obstruction. CONCLUSIONS In our patients with acute unilateral UUT obstruction due to calculi, functional kidney MRI using BOLD and DW sequences allowed for the monitoring of pathophysiologic changes of obstructed kidneys during obstruction and after its release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.