924 resultados para IMAGE PROCESSING COMPUTER-ASSISTED
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.
Resumo:
ImageJ es un programa informático de tratamiento digital de imagen orientado principalmente hacia el ámbito de las ciencias de la salud. Se trata de un software de dominio público y de código abierto desarrollado en lenguaje Java en las instituciones del National Institutes of Health de Estados Unidos. Incluye por defecto potentes herramientas para editar, procesar y analizar imágenes de casi cualquier tipo y formato. Sin embargo, su mayor virtud reside en su extensibilidad: las funcionalidades de ImageJ pueden ampliarse hasta resolver casi cualquier problema de tratamiento digital de imagen mediante macros, scripts y, especialmente, plugins programables en lenguaje Java gracias a la API que ofrece. Además, ImageJ cuenta con repositorios oficiales en los que es posible obtener de forma gratuita macros, scripts y plugins aplicables en multitud de entornos gracias a la labor de la extensa comunidad de desarrolladores de ImageJ, que los depura, mejora y amplia frecuentemente. Este documento es la memoria de un proyecto que consiste en el análisis detallado de las herramientas de tratamiento digital de imagen que ofrece ImageJ. Tiene por objetivo determinar si ImageJ, a pesar de estar más enfocado a las ciencias de la salud, puede resultar útil en el entorno de la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid, y en tal caso, resaltar las características que pudieran resultar más beneficiosas en este ámbito y servir además como guía introductoria. En las siguientes páginas se examinan una a una las herramientas de ImageJ (versión 1.48q), su funcionamiento y los mecanismos subyacentes. Se sigue el orden marcado por los menús de la interfaz de usuario: el primer capítulo abarca las herramientas destinadas a la manipulación de imágenes en general (menú Image); el segundo, las herramientas de procesado (menú Process); el tercero, las herramientas de análisis (menú Analyze); y el cuarto y último, las herramientas relacionadas con la extensibilidad de ImageJ (menú Plugins). ABSTRACT. ImageJ is a digital image processing computer program which is mainly focused at the health sciences field. It is a public domain, open source software developed in Java language at the National Institutes of Health of the United States of America. It includes powerful built-in tools to edit, process and analyze almost every type of image in nearly every format. However, its main virtue is its extensibility: ImageJ functionalities can be widened to solve nearly every situation found in digital image processing through macros, scripts and, specially, plugins programmed in Java language thanks to the ImageJ API. In addition, ImageJ has official repositories where it is possible to freely get many different macros, scripts and plugins thanks to the work carried out by the ImageJ developers community, which continuously debug, improve and widen them. This document is a report which explains a detailed analysis of all the digital image processing tools offered by ImageJ. Its final goal is to determine if ImageJ can be useful to the environment of Escuela Tecnica Superior de Ingenierfa y Sistemas de Telecomunicacion of Universidad Politecnica de Madrid, in spite of being focused at the health sciences field. In such a case, it also aims to highlight the characteristics which could be more beneficial in this field, and serve as an introductory guide too. In the following pages, all of the ImageJ tools (version 1.48q) are examined one by one, as well as their work and the underlying mechanics. The document follows the order established by the menus in ImageJ: the first chapter covers all the tools destined to manipulate images in general (menu Image); the second one covers all the processing tools (menu Process); the third one includes analyzing tools (menu Analyze); and finally, the fourth one contains all those tools related to ImageJ extensibility (menu Plugins).
Resumo:
Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. Key points: • Lung cancer screening using low dose computed tomography reduces mortality. • Leading US medical societies recommend large scale screening for high-risk individuals. • There are no lung cancer screening recommendations or reimbursed screening programmes in Europe as of yet. • The European Society of Radiology and the European Respiratory Society recommend lung cancer screening within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. • High risk, eligible individuals should be enrolled in comprehensive, quality-controlled longitudinal programmes.
Resumo:
In the study of complex networks, vertex centrality measures are used to identify the most important vertices within a graph. A related problem is that of measuring the centrality of an edge. In this paper, we propose a novel edge centrality index rooted in quantum information. More specifically, we measure the importance of an edge in terms of the contribution that it gives to the Von Neumann entropy of the graph. We show that this can be computed in terms of the Holevo quantity, a well known quantum information theoretical measure. While computing the Von Neumann entropy and hence the Holevo quantity requires computing the spectrum of the graph Laplacian, we show how to obtain a simplified measure through a quadratic approximation of the Shannon entropy. This in turns shows that the proposed centrality measure is strongly correlated with the negative degree centrality on the line graph. We evaluate our centrality measure through an extensive set of experiments on real-world as well as synthetic networks, and we compare it against commonly used alternative measures.
Resumo:
Laplacian-based descriptors, such as the Heat Kernel Signature and the Wave Kernel Signature, allow one to embed the vertices of a graph onto a vectorial space, and have been successfully used to find the optimal matching between a pair of input graphs. While the HKS uses a heat di↵usion process to probe the local structure of a graph, the WKS attempts to do the same through wave propagation. In this paper, we propose an alternative structural descriptor that is based on continuoustime quantum walks. More specifically, we characterise the structure of a graph using its average mixing matrix. The average mixing matrix is a doubly-stochastic matrix that encodes the time-averaged behaviour of a continuous-time quantum walk on the graph. We propose to use the rows of the average mixing matrix for increasing stopping times to develop a novel signature, the Average Mixing Matrix Signature (AMMS). We perform an extensive range of experiments and we show that the proposed signature is robust under structural perturbations of the original graphs and it outperforms both the HKS and WKS when used as a node descriptor in a graph matching task.
Resumo:
This paper introduces an automated computer- assisted system for the diagnosis of cervical intraepithelial neoplasia (CIN) using ultra-large cervical histological digital slides. The system contains two parts: the segmentation of squamous epithelium and the diagnosis of CIN. For the segmentation, to reduce processing time, a multiresolution method is developed. The squamous epithelium layer is first segmented at a low (2X) resolution. The boundaries are further fine tuned at a higher (20X) resolution. The block-based segmentation method uses robust texture feature vectors in combination with support vector machines (SVMs) to perform classification. Medical rules are finally applied. In testing, segmentation using 31 digital slides achieves 94.25% accuracy. For the diagnosis of CIN, changes in nuclei structure and morphology along lines perpendicular to the main axis of the squamous epithelium are quantified and classified. Using multi-category SVM, perpendicular lines are classified into Normal, CIN I, CIN II, and CIN III. The robustness of the system in term of regional diagnosis is measured against pathologists' diagnoses and inter-observer variability between two pathologists is considered. Initial results suggest that the system has potential as a tool both to assist in pathologists' diagnoses, and in training.
Resumo:
In this work an image pre-processing module has been developed to extract quantitative information from plantation images with various degrees of infestation. Four filters comprise this module: the first one acts on smoothness of the image, the second one removes image background enhancing plants leaves, the third filter removes isolated dots not removed by the previous filter, and the fourth one is used to highlight leaves' edges. At first the filters were tested with MATLAB, for a quick visual feedback of the filters' behavior. Then the filters were implemented in the C programming language. At last, the module as been coded in VHDL for the implementation on a Stratix II family FPGA. Tests were run and the results are shown in this paper. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
In order to simplify computer management, several system administrators are adopting advanced techniques to manage software configuration of enterprise computer networks, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. Virtualization is an established technology, however its use is been more focused on server consolidation and virtual desktop infrastructure, not for managing distributed computers over a network. This paper discusses the feasibility of the Distributed Virtual Machine Environment, a new approach for enterprise computer management that combines virtualization and distributed system architecture as the basis of the management architecture. © 2008 IEEE.
Resumo:
This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.
ANN statistical image recognition method for computer vision in agricultural mobile robot navigation
Resumo:
The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.
Resumo:
The aim of this study was to evaluate the accuracy of virtual three-dimensional (3D) reconstructions of human dry mandibles, produced from two segmentation protocols (outline only and all-boundary lines).Twenty virtual three-dimensional (3D) images were built from computed tomography exam (CT) of 10 dry mandibles, in which linear measurements between anatomical landmarks were obtained and compared to an error probability of 5 %.The results showed no statistically significant difference among the dry mandibles and the virtual 3D reconstructions produced from segmentation protocols tested (p = 0,24).During the designing of a virtual 3D reconstruction, both outline only and all-boundary lines segmentation protocols can be used.Virtual processing of CT images is the most complex stage during the manufacture of the biomodel. Establishing a better protocol during this phase allows the construction of a biomodel with characteristics that are closer to the original anatomical structures. This is essential to ensure a correct preoperative planning and a suitable treatment.
Resumo:
In this paper we propose a new system that allows reliable acetabular cup placement when the THA is operated in lateral approach. Conceptually it combines the accuracy of computer-generated patient-specific morphology information with an easy-to-use mechanical guide, which effectively uses natural gravity as the angular reference. The former is achieved by using a statistical shape model-based 2D-3D reconstruction technique that can generate a scaled, patient-specific 3D shape model of the pelvis from a single conventional anteroposterior (AP) pelvic X-ray radiograph. The reconstructed 3D shape model facilitates a reliable and accurate co-registration of the mechanical guide with the patient’s anatomy in the operating theater. We validated the accuracy of our system by conducting experiments on placing seven cups to four pelvises with different morphologies. Taking the measurements from an image-free navigation system as the ground truth, our system showed an average accuracy of 2.1 ±0.7 o for inclination and an average accuracy of 1.2 ±1.4 o for anteversion.
Resumo:
Background Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty. Methods A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemipelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method, Results Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute. Conclusions Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA.