974 resultados para IFN-gamma mRNA
Resumo:
Adult Ascaris suum body extract (Asc) prepared from male and female worms (with stored eggs) down-regulates the specific immune response of DBA/2 mice to ovalbumin (OA) and preferentially stimulates a Th2 response to its own components, which is responsible for the suppression of the OA-specific Th1 response. Here, we investigated the participation of soluble extracts prepared from male or female worms or from eggs (E-Asc) in these immunological events. Extracts from either sex (1 mg/animal) or E-Asc (0.35 or 1 mg protein/animal) suppressed the delayed-type hypersensitivity (DTH) reaction (60-85%), proliferative response (50-70%), IL-2 and IFN-gamma secretion (below detection threshold) and IgG1 antibody production (70-90%) of DBA/2 mice to OA. A dose of 0.1 mg E-Asc/animal did not change DTH or proliferation, but was as effective as 0.35 mg in suppressing IL-2 and IFN-gamma, and OA-specific IgG1 antibodies. Lymph node cells from DBA/2 mice injected with Asc (1 mg/animal) or a high dose of E-Asc (1 mg protein/animal) secreted IL-4 upon in vitro stimulation with concanavalin A. As previously demonstrated for Asc, the cytokine profile obtained with the E-Asc was dose dependent and changed towards Th1 when a low dose (0.1 mg protein/animal) was used. Taken together, these results suggest that adult worms of either sex and eggs induce the same type of T cell response and share similar immunosuppressive properties.
Resumo:
We demonstrated that 4 mM butyrate induces apoptosis in murine peritoneal macrophages in a dose- and time-dependent manner as indicated by studies of cell viability, flow cytometric analysis of annexin-V binding, DNA ladder pattern and the determination of hypodiploid DNA content. The activity of caspase-3 was enhanced during macrophage apoptosis induced by butyrate and the caspase inhibitor z-VAD-FMK (100 µM) inhibited the butyrate effect, indicating the major role of the caspase cascade in the process. The levels of butyrate-induced apoptosis in macrophages were enhanced by co-treatment with 1 µg/ml bacterial lipopolysaccharide (LPS). However, our data indicate that apoptosis induced by butyrate and LPS involves different mechanisms. Thus, LPS-induced apoptosis was only observed when macrophages were primed with IFN-gamma and was partially dependent on iNOS, TNFR1 and IRF-1 functions as determined in experiments employing macrophages from various knockout mice. In contrast, butyrate-induced macrophage apoptosis was highly independent of IFN-gamma priming and of iNOS, TNFR1 and IRF-1 functions.
Resumo:
The gut mucosa is a major site of contact with antigens from food and microbiota. Usually, these daily contacts with natural antigens do not result in inflammatory reactions; instead they result in a state of systemic hyporesponsiveness named oral tolerance. Inflammatory bowel diseases (IBD) are associated with the breakdown of the immunoregulatory mechanisms that maintain oral tolerance. Several animal models of IBD/colitis are available. In mice, these include targeted disruptions of the genes encoding cytokines, T cell subsets or signaling proteins. Colitis can also be induced by intrarectal administration of chemical substances such as 2,4,6-trinitrobenzene sulfonic acid in 50% ethanol. We report here a novel model of colitis induced by intrarectal administration of 50% ethanol alone. Ethanol-treated mice develop an inflammatory reaction in the colon characterized by an intense inflammatory infiltrate in the mucosa and submucosa of the large intestine. They also present up-regulation of both interferon gamma (IFN-gamma) and interleukin-4 (IL-4) production by cecal lymph node and splenic cells. These results suggest a mixed type of inflammation as the substrate of the colitis. Interestingly, cells from mesenteric lymph nodes of ethanol-treated mice present an increase in IFN-gamma production and a decrease in IL-4 production indicating that the cytokine balance is altered throughout the gut mucosa. Moreover, induction of oral tolerance to ovalbumin is abolished in these animals, strongly suggesting that ethanol-induced colitis interferes with immunoregulatory mechanisms in the intestinal mucosa. This novel model of colitis resembles human IBD. It is easy to reproduce and may help us to understand the mechanisms involved in IBD pathogenesis.
Resumo:
Allogeneic bone marrow transplantation (alloBMT) is the only curative therapy for chronic myelogenous leukemia (CML). This success is explained by the delivery of high doses of antineoplastic agents followed by the rescue of marrow function and the induction of graft-versus-leukemia reaction mediated by allogeneic lymphocytes against host tumor cells. This reaction can also be induced by donor lymphocyte infusion (DLI) producing remission in most patients with CML who relapse after alloBMT. The immunological mechanisms involved in DLI therapy are poorly understood. We studied five CML patients in the chronic phase, who received DLI after relapsing from an HLA-identical BMT. Using flow cytometry we evaluated cellular activation and apoptosis, NK cytotoxicity, lymphocytes producing cytokines (IL-2, IL-4 and IFN-gamma), and unstimulated (in vivo) lymphocyte proliferation. In three CML patients who achieved hematological and/or cytogenetic remission after DLI we observed an increase of the percent of activation markers on T and NK cells (CD3/DR, CD3/CD25 and CD56/DR), of lymphocytes producing IL-2 and IFN-gamma, of NK activity, and of in vivo lymphocyte proliferation. These changes were not observed consistently in two of the five patients who did not achieve complete remission with DLI. The percent of apoptotic markers (Fas, FasL and Bcl-2) on lymphocytes and CD34-positive cells did not change after DLI throughout the different study periods. Taken together, these preliminary results suggest that the therapeutic effect of DLI in the chronic phase of CML is mediated by classic cytotoxic and proliferative events involving T and NK cells but not by the Fas pathway of apoptosis.
Resumo:
Leishmaniasis is a disease caused by protozoa of the genus Leishmania, and visceral leishmaniasis is a form in which the inner organs are affected. Since knowledge about immunity in experimental visceral leishmaniasis is poor, we present here a review on immunity and immunosuppression in experimental visceral leishmaniasis in mouse and hamster models. We show the complexity of the mechanisms involved and differences when compared with the cutaneous form of leishmaniasis. Resistance in visceral leishmaniasis involves both CD4+ and CD8+ T cells, and interleukin (IL)-2, interferon (IFN)- gamma, and IL-12, the latter in a mechanism independent of IFN- gamma and linked to transforming growth factor (TGF)-ß production. Susceptibility involves IL-10 but not IL-4, and B cells. In immune animals, upon re-infection, the elements involved in resistance are different, i.e., CD8+ T cells and IL-2. Since one of the immunopathological consequences of active visceral leishmaniasis in humans is suppression of T-cell responses, many studies have been conducted using experimental models. Immunosuppression is mainly Leishmania antigen specific, and T cells, Th2 cells and adherent antigen-presenting cells have been shown to be involved. Interactions of the co-stimulatory molecule family B7-CTLA-4 leading to increased level of TGF-ß as well as apoptosis of CD4+ T cells and inhibition of macrophage apoptosis by Leishmania infection are other components participating in immunosuppression. A better understanding of this complex immune response and the mechanisms of immunosuppression in experimental visceral leishmaniasis will contribute to the study of human disease and to vaccine development.
Resumo:
Using a short-term bulk culture protocol designed for an intracellular-staining method based on a flow cytometry approach to the frequencies of cytokine-producing cells from tuberculosis and leprosy patients, we found distinct patterns of T cell subset expression. The method also reveals the profile of peak cytokine production and can provide simultaneous information about the phenotype of cytokine-producing cells, providing a reliable assay for monitoring the immunity of these patients. The immune response of Mycobacterium leprae and purified protein derivative (PPD) in vitro to a panel of mycobacteria-infected patients from an endemic area was assessed in primary mononuclear cell cultures. The kinetics and source of the cytokine pattern were measured at the single-cell level. IFN-gamma-, TNF-alpha-, IL-4- and IL-10-secreting T cells were intracytoplasmic evaluated in an attempt to identify M. leprae- and PPD-specific cells directly from the peripheral blood. The analysis by this approach indicated that TNF-alpha was the first (8 h) to be produced, followed by IFN-gamma (16 h), IL-10 (20 h) and IL-4 (24 h), and double-staining experiments confirmed that CD4+ were a greater source of TNF-alpha than of CD8+ T cells (P < 0.05). Both T cell subsets secreted similar amounts of IFN-gamma. We conclude that the protocol permits rapid evaluation of cytokine production by different T cell populations. The method can also be used to define immune status in non-infected and contact individuals.
Resumo:
Wheezing associated with respiratory viral infections in infancy is very common and results in high morbidity worldwide. The Th1/Th2 pattern of immune response in these patients remains unclear and previous studies have shown controversial results. The aim of the present study was to compare the type of Th1/Th2 cytokine response between infants with acute bronchiolitis, recurrent wheezing and upper respiratory infections from a developing country. Infants younger than 2 years of age admitted to Hospital São Lucas, Porto Alegre, RS, Brazil, between May and November 2001, with an acute episode of wheezing associated with viral respiratory infection were selected. Subjects with upper respiratory infections from the emergency department were selected for the control group. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels from nasal aspirates were determined by ELISA from peripheral mononuclear cell cultures. Twenty-nine subjects with acute bronchiolitis, 18 with recurrent wheezing and 15 with upper respiratory infections were enrolled. There were no differences in family history of atopy or parental smoking between groups. Oxygen requirement was similar for the acute bronchiolitis and recurrent wheezing groups. The percentage of positive tests for the cytokines studied and the IFN-gamma/IL-4 ratio was similar for all groups. Comparison of the polarized Th1/Th2 cytokine results for the various groups showed no specific pattern of cytokine production. Infants with wheezing from a developing country do not show any specific predominant pattern of Th1/Th2 cytokine production, suggesting that multiple factors may be involved in the pathogenesis of this illness.
Resumo:
Le virus de l’hépatite murine de type 3 (MHV3) est un excellent modèle animal pour l’étude des différents désordres immunologiques lors d’infections virales. L’hépatite aiguë fulminante induite par ce virus chez la souris susceptible C57BL/6 se caractérise par la présence de plusieurs foyers nécrotiques et inflammatoires dans le foie associée à une immunodéficience en lymphocytes B et T, tuant les souris entre 3 et 5 jours post-infection. L’évolution rapide de cette maladie virale suggère un débalancement dans les mécanismes de l’immunité naturelle sous le contrôle des cellules NK et NK-T et un bris de l’équilibre entre la tolérance hépatique et la réponse inflammatoire. Afin d’élucider les rôles respectifs des différents mécanismes de la défense innée impliqués dans le développement de l’hépatite aiguë, des infections in vivo ont été réalisées chez des souris C57BL/6 avec la souche pathogène L2-MHV3 ou avec des variants du virus MHV3. Ces derniers possèdent des tropismes différents pour les cellules endothéliales sinusoïdales hépatiques et les cellules de Kupffer, tels que les virus faiblement atténué 51.6-MHV3, fortement atténué CL12-MHV3 et non pathogène YAC-MHV3. Ces études in vivo ont montré une diminution des cellules NK spléniques et myéloïdes suite à une infection avec le virus MHV3. Cette chute en cellules NK spléniques reflète un recrutement de ces cellules au niveau du foie. Par contre, les cellules NK se sont avérées permissives à la réplication virale entraînant un processus d’apoptose suite à la formation de syncétia induits par le virus. Les niveaux de recrutement et d’apoptose des cellules NK et NK-T dans le foie reflètent la pathogénicité des variants MHV3 durant les trois premiers jours de l’infection virale bien que les cellules NK recrutées au niveau du foie maintiennent leur activité cytotoxique. L’ajout des IL-12 et IL-18, qui sont normalement diminués lors de l’hépatite aiguë, provoque une production synergique d’IFN-g par les cellules NK, résultant d’une interaction entre l’activation de la voie p38 MAPK et la réplication virale. Par ailleurs, le récepteur viral CEACAM1a (carcinoembryonic antigen cell adhesion molecule 1a) serait essentiel à cette synergie, mais exercerait aussi une action inhibitrice dans la production de l’IFN-g. D’autre part, les niveaux de production des cytokines immunosuppressives IL-10, TGF-b et PGE2, impliquées dans la tolérance hépatique et particulièrement produites par les cellules de Kupffer et les cellules endothéliales sinusoïdales, sont en relation inverse avec le degré de pathogénicité des variants du virus MHV3. Finalement, le virus pathogène L2-MHV3 déclenche la production de cytokines inflammatoires par les macrophages, tels que l’IL-6 et le TNF-a. L’induction de ces cytokines par les macrophages serait indépendante de la présence de la molécule CEACAM1a. Cette stimulation est plutôt reliée à la fixation des particules virales sur des récepteurs TLR2, en association avec les régions riches en héparanes sulfates. Tous ces résultats mettent en évidence de nouveaux mécanismes par lesquels le virus MHV3 peut diminuer l’efficacité des mécanismes de l’immunité naturelle sous le contrôle des cellules NK et NK-T intrahépatiques, suite à une stimulation de l’inflammation résultant du bris de la tolérance hépatique.
Resumo:
We have developed a system to hunt and reuse special gene integration sites that allow for high and stable gene expression. A vector, named pRGFP8, was constructed. The plasmid pRGFP8 contains a reporter gene, gfp2 and two extraneous DNA fragments. The gene gfp2 makes it possible to screen the high expression regions on the chromosome. The extraneous DNA fragments can help to create the unique loci on the chromosome and increase the gene targeting frequency by increasing the homology. After transfection into Chinese hamster ovary cells (CHO) cells, the linearized pRGFP8 can integrate into the chromosome of the host cells and form the unique sites. With FACS, 90 millions transfected cells were sorted and the cells with strongest GFP expression were isolated, and then 8 stable high expression GFP CHO cell lines were selected as candidates for the new host cell. Taking the unique site created by pRGFP8 on the chromosome in the new host cells as a targeting locus, the gfp2 gene was replaced with the gene of interest, human ifngamma, by transfecting the targeting plasmid pRIH-IFN. Then using FACS, the cells with the dimmest GFP fluorescence were selected. These cells showed they had strong abilities to produce the protein of interest, IFN-gamma. During the gene targeting experiment, we found there is positive correlation between the fluorescence density of the GFP CHO host cells and the specific production rate of IFN-gamma. This result shows that the strategy in our expression system is correct: the production of the interesting protein increases with the increase fluorescence of the GFP host cells. This system, the new host cell lines and the targeting vector, can be utilized for highly expressing the gene of interest. More importantly, by using FACS, we can fully screen all the transfected cells, which can reduce the chances of losing the best cells.
Resumo:
The clonal expansion of antigen-specific CD8+ T cells in response to microbial infections is essential for adaptive immunity. Although IL-2 has been considered to be primarily responsible for this process, quantitatively normal expansion occurs in the absence of IL-2 receptor signaling. Here, we show that ligating CD27 on CD8+ T cells that have been stimulated through the T cell receptor causes their expansion in the absence of IL-2 by mediating two distinct cellular processes: enhancing cell cycling and promoting cell survival by maintaining the expression of IL-7 receptor alpha. This pathway for clonal expansion of the CD8+ T cell is not associated with the development of a capacity either for production of IFN-gamma or for cytotoxic T lymphocyte function and, therefore, is uncoupled from differentiation. Furthermore, ligating CD27 increases the threshold concentration at which IL-2 induces IFN-gamma-producing capability by the CD8+ T cell, suggesting that CD27 signaling may suppress effector differentiation. Finally, CD8+ T cells that have been stimulated by the TCR/CD27 pathway maintain their capacity for subsequent expansion and effector differentiation in response to a viral challenge in vivo. Thus, the TCR/CD27 pathway enables the CD8+ T cell to replicate by a process of self-renewal, which may contribute to the continuous generation of new effector CD8+ T cells in persistent viral infections.
Resumo:
Neuroinflammation plays an integral role in the progression of neurodegeneration. In this study we investigated the anti-inflammatory effects of different classes of flavonoids (flavanones, flavanols and anthocyanidins) in primary mixed glial cells. We found that the flavanones naringenin and hesperetin and the flavols (+)-catechin and (-)-epicatechin, but not the anthocyanidins cyanidin and pelargonidin, attenuated LPS/IFN-gamma-induced TNF-alpha production in glial cells. Naringenin also inhibited LPS/IFN-gamma-induced iNOS expression and nitric oxide production in glial cells, thus showing the strongest antiinflammatory activity among all flavonoids tested. Moreover, naringenin protected against inflammatory-induced neuronal death in a primary neuronal-glial co-culture system. Naringenin also inhibited LPS/IFN-gamma-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and downstream signal transducer and activator of transcription-1 (STAT-1) in LPS/IFN-gamma stimulated primary mixed glial cells. Taken together, our results suggest that naringenin may produce an anti-inflammatory effect in LPS/IFN-gamma stimulated glial cells that may be due to its interaction with p38 signalling cascades and the STAT-I trascription factor. (C) 2009 Elseiver Inc. All rights reserved.
Resumo:
Pteridium aquilinum (bracken fern) is one of the most common plants. Epidemiological studies have revealed a higher risk of certain types of cancers (i.e., esophageal, gastric) in people who consume bracken fern directly ( as crosiers or rhizomes) or indirectly through the consumption of milk from livestock that fed on the plant. In animals, evidence exists regarding the associations between chronic bracken fern intoxication, papilloma virus infection, and the development of carcinomas. While it is possible that some carcinogens in bracken fern could be responsible for these cancers in both humans and animals, it is equally plausible that the observed increases in cancers could be related to induction of an overall immunosuppression by the plant/its various constituents. Under the latter scenario, normal tumor surveillance responses against nascent (non-bracken-induced) cancers or responses against viral infections ( specifically those linked to induction of cancers) might be adversely impacted by continuous dietary exposure to this plant. Therefore, the overall objective of this study was to evaluate the immunomodulatory effects of bracken fern following daily ingestion of its extract by a murine host over a period of 14 ( or up to 30) days. In C57BL/6 mice administered ( by gavage) the extract, histological analyses revealed a significant reduction in splenic white pulp area. Among a variety of immune response parameters/functions assessed in these hosts and isolated cells, both delayed-type hypersensitivity (DTH) analysis and evaluation of IFN gamma. production by NK cells during T(H)1 priming were also reduced. Lastly, the innate response in these hosts-assessed by analysis of NK cell cytotoxic functionality-was also diminished. The results here clearly showed the immunosuppressive effects of P. aquilinum and that many of the functions that were modulated could contribute to the increased risk of cancer formation in exposed hosts.
Resumo:
Fish oil supplementation has been shown to improve the cachectic state of tumor-bearing animals and humans. Our previous study showed that fish oil supplementation (1 g per kg body weight per day) for 2 generations had anticancer and anticachetic effects in Walker 256 tumor-bearing rats as demonstrated by reduced tumor growth and body weight loss and increased food intake and survival. In this study, the effect of fish oil supplementation for 2 generations on membrane integrity, proliferation capacity, and CD4/CD8 ratio of lymphocytes isolated from mesenteric lymph nodes, spleen, and thymus of Walker 256 tumor-bearing animals was investigated. We also determined fish oil effect on plasma concentration and ex vivo production of cytokines [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6, and IL-10]. Lymphocytes from thymus of tumor-bearing rats presented lower viability, but this change was abolished by fish oil supplementation. Tumor growth increased proliferation of lymphocytes from all lymphoid organs, and fish oil supplementation abolished this effect. Ex vivo production of TNF-alpha and IL-6 was reduced in supplemented animals, but IL-4 and IL-10 secretion was stimulated in both nontumor and tumor-bearing rats. IL-10 and IFN-gamma plasma levels was also decreased in supplemented animals. These results suggest that the anticachetic effects of fish oil supplementation for a long period of time (2 generations) in Walker 256 tumor-bearing rats may be associated to a decrease in lymphocyte function as demonstrated by reduced viability, proliferation capacity, and cytokine production.
Resumo:
Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAB, interferon-gamma (IFN-gamma), or STAB plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAB (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAB or STAB plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.
Resumo:
Although regulation of CXCR3 and CCR4 is related to Th1 and Th2 differentiation, respectively, many CXCR3(+) and CCR4(+) cells do not express IFN-gamma and/or IL-4, suggesting that the chemokine receptor genes might be inducible by mechanisms that are lineage-independent. We investigated the regulation of CXCR3 versus IFNG, and CCR4 versus IL4 in human CD4(+) T cells by analyzing modifications of histone H3. In naive cord-blood cells, under nonpolarizing conditions not inducing IL4, CCR4 was induced to high levels without many of the activation-associated changes in promoter histone H3 found for both IL4 and CCR4 in Th2 cells. Importantly, CCR4 expression was stable in Th2 cells, but fell in nonpolarized cells after the cells were rested; this decline could be reversed by increasing histone acetylation using sodium butyrate. Patterns of histone H3 modifications in CXCR3(+) CCR4(-) and CXCR3(-) CCR4(+) CD4(+) T-cell subsets from adult blood matched those in cells cultured under polarizing conditions in vitro. Our data show that high-level lineage-independent induction of CCR4 can occur following T-cell activation without accessibility-associated changes in histone H3, but that without such changes expression is transient rather than persistent.