963 resultados para HR-XML recruiting specification
Resumo:
The increasing use of seal coats for surface restoration and the concurrent increase in failures of such treatments prompted the current research. Field observations indicated that certain aggregate types seemed to be more susceptible to failure, including stripping and disintegration. The research was thus designed to try to identify those aggregate types which would perform satisfactorily under normal conditions.
Wind Tunnel Analysis of the Effects of Planting at Highway Grade Separation Structures, HR-202, 1979
Resumo:
Blowing and drifting snow has been a problem for the highway maintenance engineer virtually since the inception of the automobile. In the early days, highway engineers were limited in their capability to design and construct drift free roadway cross sections, and the driving public tolerated the delays associated with snow storms. Modern technology, however, has long since provided the design expertise, financial resources, and construction capability for creating relatively snowdrift free highways, and the driver today has come to expect a highway facility that is free of snowdrifts, and if drifts develop they expect highway maintenance crews to open the highway within a short time. Highway administrators have responded to this charge for better control of snowdrifting. Modern highway designs in general provide an aerodynamic cross section that inhibits the deposition of snow on the roadway insofar as it is economically feasible to do so.
Resumo:
The objective of this research was to evaluate the performance of portland cement concrete pavement contraction joints utilizing a variety of sealants and joint preparations and to identify an effective sealant system. The variables evaluated were: (1) sealant material; (2) joint preparation; (3) size of saw cut (sealant reservoir); and (4) the use of backing material. This progress report contains project results to date.
Resumo:
The Iowa Department of Transportation Materials Laboratory personnel developed a process to produce a road deicer consisting of sand grains coated with calcium magnesium acetate (CMA). Research project HR-253 was established to explore commercial production of the CMA/sand deicer by an independent contractor. About 60 tons of the deicer was produced at a ready-mix concrete facility and evaluated in the field during the 1983-1984 winter season. The initial contracted production of CMA/sand deicer under research project HR-253 identified two major problems: (1) excessive unreacted lime in the final product, and (2) formation of spherical lumps within the product requiring subsequent size reduction. It was recommended in the HR-253 report that additional deicer be produced as a continuation of the project in order to address these problems and further develop the production process. A contract was negotiated with W. G. Block Co. to produce and deliver 50 tons of additional deicer. This addendum report covers this production effort including descriptions and results of all modifications of equipment and process procedures used.
Resumo:
The report documents the development and installation of an instrumented pavement on I-80 in Iowa for the purposes of demonstration and answering current pavement questions. Its two primary objectives include documentation of the installation and verification of existing design procedures through monitoring of the continuous traffic stream reactions in the pavement. Some 120 instruments were installed in a forty foot segment of reconstructed pavement. The instruments included concrete strain gages, weldable strain gages on dowels, LVDT-deflection gages and temperature sensors in the concrete and base material. Five tubes were placed under three joints and two midslabs to measure the relative moisture and density at the interface between the pavement and base with atomic equipment. The instruments were placed ahead of the paving and over 92% of the instruments responded after paving. Planning requirements, problems encountered and costs of installation are presented. The site will use piezoelectric cables in a weigh-in-motion arrangement to trigger the data collection, a microcomputer controlled data acquisition system to analyze multiple sensors simultaneously, and telemetry to monitor the site remotely. Details provide the first time user of instrumentation with valuable information on the planning, problems, costs and coordination required to establish and operate such a site.
Resumo:
The main consideration for base construction under the pavement, in the design of Iowa's interstate, was structural capacity. The material was dense graded with the aim of supporting the pavement and distributing the load as it is transferred to the underlying grade. The drainage characteristics of the base was apparently not given adequate consideration. On jointed portland cement concrete pavement, the water that is trapped immediately beneath the pavement causes severe problems. The traffic causes rapid movement of the water resulting in the hydraulic pressures or "pumping" (movement and redeposit of base fine material), further resulting in faulting between individual slabs. The objective of this evaluation is to determine if longitudinal subdrains are effective in preventing or reducing pumping, faulting and related deterioration. Results suggest that, based upon the flow from the outlets observed during periodic checks and evidence of water flow at the outlets, it appears that to date the subdrains are effective in draining the subbase and subgrade. Because of the limited data available at this time, however, the pavement condition and faulting results are inconclusive.
Resumo:
Construction of the interstate highway system began in 1956. This U.S. network of highway consists of more than 41,000 miles with 790 miles in Iowa. There have been many benefits of the controlled access roadway, but probably the most significant is the improved safety for the motorist. In Iowa, we have always endeavored to utilize quality locally available materials in our construction using the most economical or cost effective methods. Obviously when the effort is to build a cost effective system, there will be some portions of the network that will not perform as well as expected. In the design of our interstate, the main consideration for base construction under the pavement was structural capacity. The material was dense graded with the aim of supporting the pavement and distributing the load as it is transferred to the underlying grade. The drainage characteristic of the base was apparently not given adequate consideration. On jointed portland cement concrete (pcc) pavement, the water that is trapped immediately beneath the pavement causes severe problems. The traffic causes rapid movement of the water resulting in the hydraulic pressures or "pumping" (movement and redeposit of base fine material) resulting in faulting between individual slabs. Recognizing the need for maintaining this large national highway network, the Federal Highway Administration has initiated a funding program for resurfacing, restoration and rehabilitation (3R). Many miles of the system are more than 20 years old and in need of major maintenance. This new 3R Program necessitated a complete inventory of the Iowa interstate system to establish priorities and to identify those sections in need of immediate remedial treatments.
Resumo:
Stopping and turning maneuvers on high traffic volume asphalt cement concrete surfaced roads and streets often causes distortion of the pavement. Distortion may show up as excessive rutting in the wheel path, shoving of the pavement and/or rippling of the surface. Often times repeated corrective work such as cold milling or heater planing is required in these areas to maintain the pavement surface in a reasonable condition. In recent years polymer additives have been developed for asphalt cement concrete paving mixes that show promise in improving the inplace stability of the pavements. AC-13 (Styrelf 13) available from Bitucote Products Company, St. Louis, Missouri is an asphalt cement that has been modified by an additive to exhibit characteristics of very high stability in asphalt mixes.
Resumo:
Traffic noise monitoring using FHWA's Demonstration Projects Division Mobile Noise Laboratory at free field, single wall and parallel barrier site on I-380 in Evansdale, Iowa is described. Access to I-380 prior to its being open to traffic afforded a controlled pass-by monitoring phase involving different vehicle types. A subsequent second phase entailed identical measurement methodology to monitor "real world" I-380 traffic noise. Phase I data indicated increases in noise were significant under the parallel barrier conditions for light duty vehicles operating in the far lane. Phase II results showed that the actual I-380 traffic mix largely offset the earlier observed effect, but minor increases in traffic noise under the parallel system were noted. These differences in noise barrier system effectiveness are judged to be insignificant at this particular study location.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
Approximately 40,000 tons of slightly damaged asphalt concrete has been removed from Interstate 80 in Cass and stockpiled. Laboratory tests had indicated that this material had considerable value when upgraded with new aggregate and asphalt cement. This report documents the procedures used and results obtained on an experimental recycling project. It was demonstrated that present drum mixing-recycling equipment and procedures can be used to utilize this material with satisfactory results. Laboratory analyses of material components and mixtures were performed; these analyses indicate mixture can be produced that is uniform, stable, and very closely resembles mixture produced with all new material. Follow~up evaluations will be made to determine the effects of traffic and environment. Preliminary data indicate that plans should be made to incorporate the stockpiled material in projects near the stockpile site.
Resumo:
The Iowa Department of Transportation research project HR-1013 is the evaluation of a prototype continuous monitoring nuclear density unit. The Unit, the Consolidation Monitoring Device (CMD), mounts on the rear of a slip-form paver and measures the density of the concrete while still in the plastic state. The evaluation performed determined the usefulness, accuracy, precision and reproducibility of the unit. The CMD was calibrated and tested in the laboratory for one week before field evaluation. The field evaluation consisted of monitoring at least 5 miles of paving and then correlating the CMD data with two conventional density methods. The two supplemental methods were density measurement with a Troxler nuclear gauge and densities obtained from core samples.
Resumo:
The primary reason for using steam in the curing of concrete is to produce a high early strength. This high early strength is very desirable to the manufacturers of precast and prestressed concrete units, which often require expensive forms or stress beds. They want to remove the forms and move the units to storage yards as soon as possible. The minimum time between casting and moving the units is usually governed by the strength of the concrete. Steam curing accelerates the gain in strength at early ages, but the uncontrolled use of steam may seriously affect the growth in strength at later ages. The research described in this report was prompted by the need to establish realistic controls and specifications for the steam curing of pretensioned, prestressed concrete bridge beams and concrete culvert pipe manufactured in central plants. The complete project encompasses a series of laboratory and field investigations conducted over a period of approximately three years.
Resumo:
Water-surface-elevation profiles and peak discharges for the floods of September 15-16, 1992, in the Thompson, Weldon, and Chariton River Basins, south-central Iowa, are presented in this report. The profiles illustrate the 1992 floods along the Thompson, Weldon, Chariton, and South Fork Chariton Rivers and along Elk Creek in the south-central Iowa counties of Adair, Clarke, Decatur, Lucas, Madison, Ringgold, Union, and Wayne. Water-surface-elevation profiles for the floods of July 4, 1981, along the Chariton River in Lucas County and along the South Fork Chariton River in Wayne County also are included in the report for comparative purposes. The September 15-16, 1992, floods are the largest known peak discharges at gaging stations Thompson River at Davis City (station number 06898000) 57,000 cubic feet per second, Weldon River near Leon (station number 06898400) 76,200 cubic feet per second, Chariton River near Chariton (station number 06903400) 37,700 cubic feet per second, and South Fork Chariton River near Promise City (station number 06903700) 70,600 cubic feet per second. The peak discharges were, respectively, 1.7, 2.6, 1.4, and 2.1 times larger than calculated 100-year recurrence-interval discharges. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Thompson, Weldon, and Chariton River Basins using flood information collected through 1995. Information on temporary bench marks and reference points established in the Thompson and Weldon River Basins during 1994-95, and in the Chariton River Basin during 1983-84 and 1994-95, also is included in the report. A flood history summarizes rainfall conditions and damages for floods that occurred during 1947, 1959, 1981, 1992, and 1993.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges are scheduled for removal. Five of these are old high-truss single-lane bridges, each bridge having several simple spans. The other bridge is a fairly modern (1955) double 4-span continuous beam-and-slab composite highway bridge. The availability of these bridges affords an unusual opportunity for study of the behavior of full-scale bridges. Because of the magnitude of the potential testing program, a feasibility study was initiated and the results are presented in this two-part final report. Part I summarizes the findings and Part II presents the supporting detailed information.