765 resultados para Grouping, clustering, campi, associazione


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering quality or validation indices allow the evaluation of the quality of clustering in order to support the selection of a specific partition or clustering structure in its natural unsupervised environment, where the real solution is unknown or not available. In this paper, we investigate the use of quality indices mostly based on the concepts of clusters` compactness and separation, for the evaluation of clustering results (partitions in particular). This work intends to offer a general perspective regarding the appropriate use of quality indices for the purpose of clustering evaluation. After presenting some commonly used indices, as well as indices recently proposed in the literature, key issues regarding the practical use of quality indices are addressed. A general methodological approach is presented which considers the identification of appropriate indices thresholds. This general approach is compared with the simple use of quality indices for evaluating a clustering solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a symplectic chain with a non-local form of coupling by means of a standard map lattice where the interaction strength decreases with the lattice distance as a power-law, in Such a way that one can pass continuously from a local (nearest-neighbor) to a global (mean-field) type of coupling. We investigate the formation of map clusters, or spatially coherent structures generated by the system dynamics. Such clusters are found to be related to stickiness of chaotic phase-space trajectories near periodic island remnants, and also to the behavior of the diffusion coefficient. An approximate two-dimensional map is derived to explain some of the features of this connection. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining is a relatively new field of research that its objective is to acquire knowledge from large amounts of data. In medical and health care areas, due to regulations and due to the availability of computers, a large amount of data is becoming available [27]. On the one hand, practitioners are expected to use all this data in their work but, at the same time, such a large amount of data cannot be processed by humans in a short time to make diagnosis, prognosis and treatment schedules. A major objective of this thesis is to evaluate data mining tools in medical and health care applications to develop a tool that can help make rather accurate decisions. In this thesis, the goal is finding a pattern among patients who got pneumonia by clustering of lab data values which have been recorded every day. By this pattern we can generalize it to the patients who did not have been diagnosed by this disease whose lab values shows the same trend as pneumonia patients does. There are 10 tables which have been extracted from a big data base of a hospital in Jena for my work .In ICU (intensive care unit), COPRA system which is a patient management system has been used. All the tables and data stored in German Language database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A descoberta e a análise de conglomerados textuais são processos muito importantes para a estruturação, organização e a recuperação de informações, assim como para a descoberta de conhecimento. Isto porque o ser humano coleta e armazena uma quantidade muito grande de dados textuais, que necessitam ser vasculhados, estudados, conhecidos e organizados de forma a fornecerem informações que lhe dêem o conhecimento para a execução de uma tarefa que exija a tomada de uma decisão. É justamente nesse ponto que os processos de descoberta e de análise de conglomerados (clustering) se insere, pois eles auxiliam na exploração e análise dos dados, permitindo conhecer melhor seu conteúdo e inter-relações. No entanto, esse processo, por ser aplicado em textos, está sujeito a sofrer interferências decorrentes de problemas da própria linguagem e do vocabulário utilizado nos mesmos, tais como erros ortográficos, sinonímia, homonímia, variações morfológicas e similares. Esta Tese apresenta uma solução para minimizar esses problemas, que consiste na utilização de “conceitos” (estruturas capazes de representar objetos e idéias presentes nos textos) na modelagem do conteúdo dos documentos. Para tanto, são apresentados os conceitos e as áreas relacionadas com o tema, os trabalhos correlatos (revisão bibliográfica), a metodologia proposta e alguns experimentos que permitem desenvolver determinados argumentos e comprovar algumas hipóteses sobre a proposta. As conclusões principais desta Tese indicam que a técnica de conceitos possui diversas vantagens, dentre elas a utilização de uma quantidade muito menor, porém mais representativa, de descritores para os documentos, o que torna o tempo e a complexidade do seu processamento muito menor, permitindo que uma quantidade muito maior deles seja analisada. Outra vantagem está no fato de o poder de expressão de conceitos permitir que os usuários analisem os aglomerados resultantes muito mais facilmente e compreendam melhor seu conteúdo e forma. Além do método e da metodologia proposta, esta Tese possui diversas contribuições, entre elas vários trabalhos e artigos desenvolvidos em parceria com outros pesquisadores e colegas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar a possibilidade de agrupar talhões de cana-de-açúcar colhida mecanicamente e sem queima prévia da palha na região de Ribeirão Preto-SP, de acordo com o potencial de infestação de plantas daninhas, por meio de análise de agrupamento por método hierárquico e outras técnicas de análise multivariada, utilizando como variável o índice de infestação relativa atribuído por avaliações visuais, em duas etapas. A primeira contemplou 20 talhões de cana-planta com ciclo de 18 meses; essas áreas foram utilizadas para comparação de dois métodos de estimativa da composição específica da flora daninha: análise fitossociológica e por meio da porcentagem visual de cobertura geral (CG) e específica (CE). A segunda etapa consistiu no levantamento da composição específica da comunidade de plantas daninhas em 189 talhões, em áreas de cana-soca colhidas durante a safra de 2008, incluindo nesses talhões apenas CG e CE. Com as informações sobre os levantamentos da comunidade infestante foi construído um banco de dados, posteriormente submetido a análises exploratórias por técnicas de estatística multivariada. Para as principais espécies dentro dos talhões, que foram DIGNU, ARACH, IPOHF, MRRCI e IPOQU, seguidas de CYPRO, ELEIN e EPHHS, foram verificados 75% de coincidências de resultados entre os dois métodos de avaliação. Também notou-se que as avaliações visuais de porcentagem de cobertura das espécies podem substituir, para fins de praticidade, agilidade e aplicabilidade, as avaliações fitossociológicas, uma vez que proporcionaram boa capacidade de detecção das principais plantas daninhas dentro de cada talhão. As técnicas de estatística multivariada demonstraram que os talhões podem ser agrupados de acordo com semelhanças na intensidade da infestação e na composição específica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper artificial neural network (ANN) based on supervised and unsupervised algorithms were investigated for use in the study of rheological parameters of solid pharmaceutical excipients, in order to develop computational tools for manufacturing solid dosage forms. Among four supervised neural networks investigated, the best learning performance was achieved by a feedfoward multilayer perceptron whose architectures was composed by eight neurons in the input layer, sixteen neurons in the hidden layer and one neuron in the output layer. Learning and predictive performance relative to repose angle was poor while to Carr index and Hausner ratio (CI and HR, respectively) showed very good fitting capacity and learning, therefore HR and CI were considered suitable descriptors for the next stage of development of supervised ANNs. Clustering capacity was evaluated for five unsupervised strategies. Network based on purely unsupervised competitive strategies, classic "Winner-Take-All", "Frequency-Sensitive Competitive Learning" and "Rival-Penalize Competitive Learning" (WTA, FSCL and RPCL, respectively) were able to perform clustering from database, however this classification was very poor, showing severe classification errors by grouping data with conflicting properties into the same cluster or even the same neuron. On the other hand it could not be established what was the criteria adopted by the neural network for those clustering. Self-Organizing Maps (SOM) and Neural Gas (NG) networks showed better clustering capacity. Both have recognized the two major groupings of data corresponding to lactose (LAC) and cellulose (CEL). However, SOM showed some errors in classify data from minority excipients, magnesium stearate (EMG) , talc (TLC) and attapulgite (ATP). NG network in turn performed a very consistent classification of data and solve the misclassification of SOM, being the most appropriate network for classifying data of the study. The use of NG network in pharmaceutical technology was still unpublished. NG therefore has great potential for use in the development of software for use in automated classification systems of pharmaceutical powders and as a new tool for mining and clustering data in drug development

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a commercial enzyme immunoassay (EIA) was validated in detecting glucocorticoids in Pampas deer feces, in order to investigate the influence of several factors on the adrenocortical function. Fecal samples, behavioral data and information concerning male grouping and antlers status were collected at a monthly basis during a 1 year period from free-ranging stags living at Emas National Park, Brazil (18 degrees S/52 degrees W). The results revealed that concentrations of fecal glucocorticoids in winter were significantly higher than those corresponding to spring and summer. In addition, dry season data presented higher levels than during the wet season. Significant difference was found between fecal levels of breeding stags in summer and nonbreeding stags, whereas no difference was observed between breeding stags in winter and nonbreeding stags. on the other hand, males from areas with frequent human disturbance exhibited higher glucocorticoid concentrations and flight distances than individuals from areas of lower human activity. Males with antlers in velvet had elevated levels compared with animals in hard antler or antler casting. Also, we found that glucocorticoid levels were higher in groups with three or more males than in groups with only one male. The flight distances showed positive correlation with fecal glucocorticoid. These data indicate that fecal glucocorticoid provides a useful approach in the evaluation of physiological effects of environment, inter-individuals relationship and human-induced stressors on free-ranging Pampas deer stags. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to validate noninvasive endocrine monitoring techniques for Pampas deer and to evaluate seasonal changes in testicular steroidogenic activity and their correlation to reproductive behavior, antler cycle and group size. Thus, fecal samples, behavioral data and observations of antler status were collected at monthly intervals during 1 year from free-ranging Pampas deer stags (three radio-collared individuals and 15 random individuals) living in Emas National Park, Brazil (18 degrees S latitude). Fecal steroids were extracted using 80% methanol and steroid concentrations were quantified by a commercial enzyme immunoassay (EIA). Fecal testosterone concentrations peaked in December-January (summer), March (early autumn) and in August-September (winter-spring), with minimal values from April-July. Reproductive behavior had two peaks, the first in December-January, characterized by predominately anogenital sniffing, flehmen, urine sniffing, chasing and mounting behavior, and the second peak in July-September (behavior primarily related to gland marking). There were significant correlations between fecal testosterone and reproductive behavior (r = 0.490), and between fecal testosterone and antler phases (r = 0.239). Antler casting and regrowth occurred under low testosterone concentrations, whereas velvet shedding was associated with high concentrations of testosterone. We inferred that Pampas deer stags exhibited a seasonal cycle that modulated sexual behavior and the antler cycle, and we concluded that fecal steroid analysis was a practical and reliable non-invasive method for the evaluation of the endocrine status of free-ranging Pampas deer. (c) 2004 Elsevier B.V. All rights reserved.