864 resultados para Genetic Algorithms and Simulated Annealing
Resumo:
PURPOSE: Mutations in the Prominin-1 (Prom1) gene are known to cause retinitis pigmentosa and Stargardt disease, both of which are associated with progressive photoreceptor cell death. There are no effective therapies for either disorder. The aim of this study was to investigate the mechanism of the retinal degeneration in Prom1-deficient mouse models.
METHODS: We constructed Prom1 knockout mice with two distinct genetic backgrounds of C57BL/6 and C57BL/6xCBA/NSlc, and investigated the photoreceptor degeneration by means of histology and functional tests.. In addition, we examined the effect of light on the Prom1(-/-) retina by rearing the mice in the normal light/dark cycle and completely dark conditions. Finally, we investigated if the retinoic-acid derivative Fenretinide slowed the pace of retinal degeneration in these mouse models.
RESULTS: The Prom1(-/-)-knockout mice with both backgrounds developed photoreceptor degeneration after eye opening, but the CB57/BL6-background mice developed photoreceptor cell degeneration much faster than the C57BL/6xCBA/NSlc mice, demonstrating genetic background dependency.. Interestingly, our histologic and functional examination showed that the photoreceptor cell degeneration of Prom1-knockout mice was light-dependent, and was almost completely inhibited when the mutant mice were kept in the dark. The Prom1-knockout retina showed strong downregulation of expression of the visual cycle components, Rdh12 and Abca4. Furthermore, administration of Fenretinide, which lowers the level of the toxic lipofuscin, slowed the degeneration of photoreceptor cells.
CONCLUSIONS: These findings improve our understanding of the mechanism of cell death in Prominin-1-related disease and provide evidence that fenretinide may be worth studying in human disease.
Resumo:
Genetic analysis on populations of European ash (Fraxinus excelsior) throughout Ireland was carried out to determine the levels and patterns of genetic diversity in naturally seeded trees in ash woodlands and hedgerows, with the aim of informing conservation and replanting strategies in the face of potential loss of trees as a result of ash dieback. Samples from 33 sites across Northern Ireland and three sites in the Republic of Ireland were genotyped for eight nuclear and ten chloroplast microsatellites. Levels of diversity were high (mean A R = 10.53; mean H O = 0.709; mean H E = 0.765) and were similar to those in Great Britain and continental Europe, whilst levels of population genetic differentiation based on nuclear microsatellites were extremely low (Φ ST = 0.0131). Levels of inbreeding (mean F IS = 0.067) were significantly lower than those reported for populations from Great Britain. Fine-scale analysis of seed dispersal indicated potential for dispersal over hundreds of metres. Our results suggest that ash woodlands across Ireland could be treated as a single management unit, and thus native material from anywhere in Ireland could be used as a source for replanting. In addition, high potential for dispersal has implications for recolonization processes post-ash dieback (Chalara fraxinea) infection, and could aid in our assessment of the capacity of ash to shift its range in response to global climate change.
Resumo:
In recent years, the native woodlands of Europe, including those of Britain and Ireland, have increasingly come under threat from a range of biotic and abiotic factors, and are therefore a conservation priority demanding careful management in order to realise their inherent ecological and cultural benefits. Because the distribution of genetic variation across populations and regions is increasingly considered an important component of woodland management, we carried out a population genetic analysis on black alder (Alnus glutinosa) across Northern Ireland in order to inform “best practice” strategies. Our findings suggest that populations harbour high levels of genetic diversity, with very little differentiation between populations. Significant F IS values were observed in over half of the populations analysed, however, which could reflect inbreeding as a result of the patchy occurrence of alder in Northern Ireland, with scattered, favourable damp habitats being largely isolated from each other by extensive tracts of farmland. Although there is no genetic evidence to support the broad-scale implementation of tree seed zones along the lines of those proposed for native woodlands in Great Britain, we suggest that the localised occurrence of rare chloroplast haplotypes should be taken into account on a case-by-case basis. This, coupled with the identification of populations containing high genetic diversity and that are broadly representative of the region as a whole, will provide a sound genetic basis for woodland management, both in alder and more generally for species that exhibit low levels of genetic differentiation.
Resumo:
Integrins (ITGs) are key elements in cancer biology, regulating tumor growth, angiogenesis and lymphangiogenesis through interactions of the tumor cells with the microenvironment. Moving from the hypothesis that ITGs could have different effects in stage II and III colon cancer, we tested whether a comprehensive panel of germline single-nucleotide polymorphisms (SNPs) in ITG genes could predict stage-specific time to tumor recurrence (TTR). A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole-blood samples were analyzed for germline SNPs in ITG genes using PCR-restriction fragment length polymorphism or direct DNA sequencing. In the multivariable analysis, stage II colon cancer patients with at least one G allele for ITGB3 rs4642 had higher risk of recurrence (hazard ratio (HR)=4.027, 95% confidence interval (95% CI) 1.556-10.421, P=0.004). This association was also significant in the combined stage II-III cohort (HR=1.975, 95% CI 1.194-3.269, P=0.008). The predominant role of ITGB3 rs4642 in stage II diseases was confirmed using recursive partitioning, showing that ITGB3 rs4642 was the most important factor in stage II diseases. In contrast, in stage III diseases the combined analysis of ITGB1 rs2298141 and ITGA4 rs7562325 allowed to identify three distinct prognostic subgroups (P=0.009). The interaction between stage and the combined ITGB1 rs2298141 and ITGA4 rs7562325 on TTR was significant (P=0.025). This study identifies germline polymorphisms in ITG genes as independent stage-specific prognostic markers for stage II and III colon cancer. These data may help to select subgroups of patients who may benefit from ITG-targeted treatments.
Resumo:
The stock structure of turbot was investigated between samples from S-Norway, the Irish Sea and the Kattegat, using 12 microsatellite loci and compared to the turbot caught in Icelandic waters. Highly significant genetic differentiation was observed between samples from Kattegat and other areas. Significant genetic differentiation was also observed between the Irish Sea sample on one hand and Iceland and S-Norway on the other hand. No significant genetic differentiation was observed between Iceland and S-Norway. Otoliths of 25 turbot, age ranging from 3 to 19 years, were subjected to nearly 300 mass spectrometry determinations of stable oxygen and carbon isotopes. Oxygen isotope composition (δ18O) in the otolith samples was used to estimate ambient temperature at time of otolith accretion, and yielded estimated temperatures experienced by the turbot ranging from 3 to 15°C. Overall, the genetic analysis indicates panmixia between turbot in Icelandic and Norwegian waters. While the extensive migration of larvae between Norway and Iceland is unlikely, passive drift of turbot larva from other areas (e.g. Ireland) cannot be ruled out.
Resumo:
Rapid developments in microelectronics and computer science continue to fuel new opportunities for real-time control engineers. The ever-increasing system complexity and sophistication, environmental legislation, economic competition, safety and reliability constitute some of the driving forces for the research themes presented at the IFAC Workshop on Algorithms and Architectures for Real-Time Control (AARTC'2000). The Spanish Society for Automatic Control hosted AARTC'2000, which was held at Palma de Maiorca, Spain, from 15 to 17 May. This workshop was the sixth in the series.
Resumo:
Algorithm and Architectures for Real-Time Control Workshop had the objective to investigate the state of the art and to present new research and application results in software and hardware for real-timecontrol, as well as to bring together engeneers and computer scientists who are researchers, developers and practitioners, both from the academic and the industrial world.
Resumo:
We explored the relationships between perturbation-driven population decline and genetic/genotypic structure in the clonal seagrass Posidonia oceanica, subject to intensive meadow regression around four Mediterranean fish-farms, using seven specific microsatellites. Two meadows were randomly sampled (40 shoots) within 1,600 m2 at each site: the “impacted” station, 5–200 m from fish cages, and the “control” station, around 1,000 m downstream further away (considered a proxy of the pre-impact genetic structure at the site). Clonal richness (R), Simpson genotypic diversity (D*) and clonal sub-range (CR) were highly variable among sites. Nevertheless, the maximum distance at which clonal dispersal was detected, indicated by CR, was higher at impacted stations than at the respective control station (paired t-test: P < 0.05, N = 4). The mean number of alleles (Â) and the presence of rare alleles ( r) decreased at impacted stations (paired t-test: P < 0.05, and P < 0.02, respectively, N = 4). At a given perturbation level (quantified by the organic and nutrient loads), shoot mortality at the impacted stations significantly decreased with CR at control stations (R 2 = 0.86, P < 0.05). Seagrass mortality also increased with  (R 2 = 0.81, P < 0.10), R (R 2 = 0.96, P < 0.05) and D* (R 2 = 0.99, P < 0.01) at the control stations, probably because of the negative correlation between those parameters and CR. Therefore, the effects of clonal size structure on meadow resistance could play an important role on meadow survival. Large genotypes of P. oceanica meadows thus seem to resist better to fish farm-derived impacts than little ones. Clonal integration, foraging advantage or other size-related fitness traits could account for this effect.
Resumo:
In this article we provide brief descriptions of three classes of schedulers: Operating Systems Process Schedulers, Cluster Systems, Jobs Schedulers and Big Data Schedulers. We describe their evolution from early adoptions to modern implementations, considering both the use and features of algorithms. In summary, we discuss differences between all presented classes of schedulers and discuss their chronological development. In conclusion, we highlight similarities in the focus of scheduling strategies design, applicable to both local and distributed systems.
Resumo:
This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.
Resumo:
Abstract: Selection among broilers for performance traits is resulting in locomotion problems and bone disorders, once skeletal structure is not strong enough to support body weight in broilers with high growth rates. In this study, genetic parameters were estimated for body weight at 42 days of age (BW42), and tibia traits (length, width, and weight) in a population of broiler chickens. Quantitative trait loci (QTL) were identified for tibia traits to expand our knowledge of the genetic architecture of the broiler population. Genetic correlations ranged from 0.56 +/- 0.18 (between tibia length and BW42) to 0.89 +/- 0.06 (between tibia width and weight), suggesting that these traits are either controlled by pleiotropic genes or by genes that are in linkage disequilibrium. For QTL mapping, the genome was scanned with 127 microsatellites, representing a coverage of 2630 cM. Eight QTL were mapped on Gallus gallus chromosomes (GGA): GGA1, GGA4, GGA6, GGA13, and GGA24. The QTL regions for tibia length and weight were mapped on GGA1, between LEI0079 and MCW145 markers. The gene DACH1 is located in this region; this gene acts to form the apical ectodermal ridge, responsible for limb development. Body weight at 42 days of age was included in the model as a covariate for selection effect of bone traits. Two QTL were found for tibia weight on GGA2 and GGA4, and one for tibia width on GGA3. Information originating from these QTL will assist in the search for candidate genes for these bone traits in future studies.
Resumo:
Geographical isolation and polyploidization are central concepts in plant evolution. The hierarchical organization of archipelagos in this study provides a framework for testing the evolutionary consequences for polyploid taxa and populations occurring in isolation. Using amplified fragment length polymorphism and simple sequence repeat markers, we determined the genetic diversity and differentiation patterns at three levels of geographical isolation in Olea europaea: mainland-archipelagos, islands within an archipelago, and populations within an island. At the subspecies scale, the hexaploid ssp. maroccana (southwest Morocco) exhibited higher genetic diversity than the insular counterparts. In contrast, the tetraploid ssp. cerasiformis (Madeira) displayed values similar to those obtained for the diploid ssp. guanchica (Canary Islands). Geographical isolation was associated with a high genetic differentiation at this scale. In the Canarian archipelago, the stepping-stone model of differentiation suggested in a previous study was partially supported. Within the western lineage, an east-to-west differentiation pattern was confirmed. Conversely, the easternmost populations were more related to the mainland ssp. europaea than to the western guanchica lineage. Genetic diversity across the Canarian archipelago was significantly correlated with the date of the last volcanic activity in the area/island where each population occurs. At the island scale, this pattern was not confirmed in older islands (Tenerife and Madeira), where populations were genetically homogeneous. In contrast, founder effects resulted in low genetic diversity and marked genetic differentiation among populations of the youngest island, La Palma.
Resumo:
To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.
Resumo:
This research attempted to address the question of the role of explicit algorithms and episodic contexts in the acquisition of computational procedures for regrouping in subtraction. Three groups of students having difficulty learning to subtract with regrouping were taught procedures for doing so through either an explicit algorithm, an episodic content or an examples approach. It was hypothesized that the use of an explicit algorithm represented in a flow chart format would facilitate the acquisition and retention of specific procedural steps relative to the other two conditions. On the other hand, the use of paragraph stories to create episodic content was expected to facilitate the retrieval of algorithms, particularly in a mixed presentation format. The subjects were tested on similar, near, and far transfer questions over a four-day period. Near and far transfer algorithms were also introduced on Day Two. The results suggested that both explicit and episodic context facilitate performance on questions requiring subtraction with regrouping. However, the differential effects of these two approaches on near and far transfer questions were not as easy to identify. Explicit algorithms may facilitate the acquisition of specific procedural steps while at the same time inhibiting the application of such steps to transfer questions. Similarly, the value of episodic context in cuing the retrieval of an algorithm may be limited by the ability of a subject to identify and classify a new question as an exemplar of a particular episodically deflned problem type or category. The implications of these findings in relation to the procedures employed in the teaching of Mathematics to students with learning problems are discussed in detail.
Resumo:
Seven crayfish species from three genera of the subfamily Cambarinae were electrophoretically examined for genetic variation at a total of twenty-six loci. Polymorphism was detected primarily at three loci: Ao-2, Lap, and Pgi. The average heterozygosities over-all loci for each species were found to be very low when compared to most other invertebrate species that have been examined electrophoretically. With the exception of Cambarus bartoni, the interpopulation genetic identities are high within any given species. The average interspecific identities are somewhat lower and the average intergeneric identities are lower still. Populations, species and genera conform to the expected taxonomic progression. The two samples of ~ bartoni show high genetic similarity at only 50 percent of the loci compared. Locus by locus identity comparisons among species yield U-shaped distributions of genetic identities. Construction of a phylogenetic dendrogram using species mean genetic distances values shows that species grouping is in agreement with morphological taxonomy with the exception of the high similarity between Orconectespropinquus and Procambarus pictus. This high similarity suggests the possibility of a regulatory change between the two species. It appears that the low heterozygosities, high interpopulation genetic identities, and taxonomic mispositioning can all be explained on the basis of low mutation rates.