966 resultados para Gastropod shells
Resumo:
Closed WS2 nanoboxes were formed by topotactic sulfidization of a WO3/WO3 center dot 1/3H(2)O intergrowth precursor. Automated diffraction tomography was used to elucidate the growth mechanism of these unconventional hollow structures. By partial conversion and structural analysis of the products, each of them representing a snapshot of the reaction at a given point in time, the overall reaction can be broken down into a cascade of individual steps and each of them identified with a basic mechanism. During the initial step of sulfidization WO3 center dot 1/3H(2)O transforms into hexagonal WO3 whose surface allows for the epitaxial induction of WS2. The initially formed platelets of WS2 exhibit a preferred orientation with respect to the nanorod surface. In the final step individual layers of WS2 coalesce to form closed shells. In essence, a cascade of several topotactic reactions leads to epitactic induction and formation of closed rectangular hollow boxes made up from hexagonal layers.
Resumo:
This paper presents a study on the effectiveness of two forms of reinforced grout confining systems for hollow concrete block masonry. The systems considered are: (1) a layer of grout directly confining the unreinforced masonry, and (2) a layer of grout indirectly confining the unreinforced masonry through block shells. The study involves experimental testing and finite-element (FE) modeling of six diagonally loaded masonry panels containing the two confining systems. The failure mode, the ultimate load, and the load-deformation behaviors of the diagonally loaded panels were successfully simulated using the finite-element model. In-plane shear strength and stiffness of the masonry thus determined are used to evaluate some selected models of the confined masonry shear including the strut-and-tie model reported in the literature. The evaluated strut width is compared with the prediction of the FE model and then extended for rational prediction of the strength of confined masonry shear walls.
Resumo:
Late Sakmarian to early Artinskian (Early Permian) carbonate deposition was widespread in the marine intracratonic rift basins that extended into the interior of Eastern Gondwana from Timor in the north to the northern Perth Basin in the south. These basins spanned about 20° of paleolatitude (approximately 35°S to 55°S). This study describes the type section of the Maubisse Limestone in Timor-Leste, and compares this unit with carbonate sections in the Canning Basin (Nura Nura Member of the Poole Sandstone), the Southern Carnarvon Basin (Callytharra Formation) and the northern Perth Basin (Fossil Cliff Member of the Holmwood Shale). The carbonate units have no glacial influence and formed part of a major depositional cycle that, in the southern basins, overlies glacially influenced strata and lies a short distance below mudstone containing marine fossils and scattered dropstones (perhaps indicative of sea ice). In the south marine conditions became more restricted and were replaced by coal measures at the top of the depositional sequence. In the north, the carbonate deposits are possibly bryozoan–crinoidal mounds; whereas in the southern basins they form laterally continuous relatively thin beds, deposited on a very low-gradient seafloor, at the tops of shale–limestone parasequences that thicken upward in parasequence sets. All marine deposition within the sequence took place under very shallow (inner neritic) conditions, and the limestones have similar grain composition. Bryozoan and crinoidal debris dominate the grain assemblages and brachiopod shell fragments, foraminifera and ostracod valves are usually common. Tubiphytes ranged as far south as the Southern Carnarvon Basin, albeit rarely, but is more common to the north. Gastropod and bivalve shell debris, echinoid spines, solitary rugose corals and trilobite carapace elements are rare. The uniformity of the grain assemblage and the lack of tropical elements such as larger fusulinid foraminifera, colonial corals or dasycladacean algae indicate temperate marine conditions with only a small increase in temperature to the north. The depositional cycle containing the studied carbonate deposits represents a warmer phase than the preceding glacially influenced Asselian to early Sakmarian interval and the subsequent cool phase of the “mid” Artinskian that is followed by significant warming during the late Artinskian–early Kungurian. The timing of cooler and warmer intervals in the west Australian basins seems out-of-phase with the eastern Australian succession, but this may be a problem of chronostratigraphic miscorrelation due to endemic faunas and palynofloras.
Resumo:
One-quarter of the total primary production on earth is contributed by diatoms1. These are photosynthetic, unicellular algae with ornamented silica shells found in all aquatic and moist environments. They form the base of energy-efficient food webs that support all aquatic life forms. More than 250 genera of living diatoms, with as many as 100,000 species are known2. Fossil diatoms are known as early as the Cretaceous, 144–65 m.y. ago3. In India, deposits of diatoms occur in Rajasthan and are known as ‘multani mitti’. Multani mitti or Indian Fuller’s earth or diatomaceous earth as it is called in the West, is applied as a paste on the surface of the skin for 15–20 min and then washed-off. This leaves the skin feeling smooth, soft, moist and rejuvenated. Diatomaceous earth is now being used in the formulation of soaps, cleansing products, face powders and skincare preparations. Diatomaceous earth is a mineral material consisting mainly of siliceous fragments of various species of fossilized remains of diatoms.
Resumo:
Previous studies have shown that the external growth records of the posterior adductor muscle scar (PAMS) of the bivalve Pinna nobilis are incomplete and do not produce accurate age estimations. We have developed a new methodology to study age and growth using the inner record of the PAMS, which avoids the necessity of costly in situ shell measurements or isotopic studies. Using the inner record we identified the positions of PAMS previously obscured by nacre and estimated the number of missing records in adult specimens with strong abrasion of the calcite layer in the anterior portion of the shell. The study of the PAMS and inner record of two shells that were 6 years old when collected showed that only 2 and 3 PAMS were observed, while 6 inner records could be counted, thus confirming our working methodology. Growth parameters of a P. nobilis population located in Moraira, Spain (western Mediterranean) were estimated with the new methodology and compared to those obtained using PAMS data and in situ measurements. For the comparisons, we applied different models considering the data alternatively as length-at-age (LA) and tag-recapture (TR). Among every method we tested to fit the Von Bertalanffy growth model, we observed that LA data from inner record fitted to the model using non-linear mixed effects and the estimation of missing records using the calcite width was the most appropriate. The equation obtained with this method, L = 573*(1 - e(-0.16(t-0.02))), is very similar to that calculated previously from in situ measurements for the same population.
Resumo:
An experimental investigation by two-dimensional photoelastic technique is carried out to study the stress distribution and to determine the stress-intensity factors for arbitrarily oriented cracks in thin cylindrical shells subjected to torsion. A new method is employed to evaluate the pure and mixed-mode SIF's.
Resumo:
The discovery of magnetic superconductors has posed the problem of the coexistence of two kinds of orders (magnetic and superconducting) in some temperature intervals in these systems. New microscopic mechanisms developed by us to explain the coexistence and reentrant behaviour are reported. The mechanism for antiferromagnetic superconductors which shows enhancement of superconductivity below the magnetic transition is found relevant for rare-earth systems having less than half-filled f-atomic shells. The theory will be compared with the experimental results of SmRh4B4 system. A phenomenological treatment based on a generalized Ginzburg-Landau approach will also be presented to explain the anomalous behaviour of the second critical field in some antiferromagnetic superconductors. These magnetic superconductors provide two kinds of Bose fields, namely, phonons and magnons which interact with each other and also with the conduction electrons. Theoretical studies of the effects of the excitations of these modes on superconducting pairing and magnetic ordering in these systems will be discussed.
Resumo:
The gravity based structure (GBS) with external Steel–Concrete–Steel (SCS) sandwich ice-resistant wall has been developed for the Arctic oil and gas drilling. This paper firstly reported the experimental studies on the mechanical properties of steel and concretes under Arctic low temperature. With the test data, design equations were developed to incorporate the influences of the low temperature on these mechanical properties. Two types of Arctic GBS structure with flower-conical SCS sandwich shell type and plate type of ice-resistant wall have been developed for the Arctic offshore structure. Besides the studies on the materials, two SCS sandwich prototype shells and plates were, respectively, prepared and tested under patch loading that simulated the localized ice-contact pressure. The structural behaviors of the SCS sandwich structure under patch loading were reported and discussions were made on the influences of different parameters on the structural behavior of the structure. Analytical models were developed to predict the punching shear resistances of the SCS sandwich structure through modifying the code provisions. The accuracies of the developed analytical models were checked through validations against 27 tests in the literature. Corresponding design procedures on resistances of SCS sandwich structure were recommended based on these discussions and validations.
Resumo:
An improved higher order transverse shear deformation theory is employed to arrive at modified constitutive relations which can be used in the flexural, buckling and vibration analysis of laminated plates and shells. The strain energy for such systems is then expressed in terms of the displacements and the rotations for ready reference and use. Numerical values of vibration frequencies are obtained using this formulation employing Ritz's method of analysis. The results are compared with those available in the literature to validate the analysis presented.
Resumo:
Several species of oysters, clams and mussels are currently being used around the world to create extra profits and help remediate waste-waters from mariculture operations. To identify opportunities and potentially suitable species of bivalves for remediation of prawn farm effluent in Australia, recent literature dealing with bivalve filtration is reviewed, and species occurring naturally in a banana prawn, Penaeus (Fenneropenaeus) merguiensis, grow-out pond and effluent streams at the Bribie Island Aquaculture Research Centre (BIARC) were collected, identified and assessed in terms of their tolerance of high silt loadings over 3 months. Three bivalve species predominated in the BIARC case study. These were the mud ark, Anadara trapezia, the rock oyster, Dendostrea folium, and the pearl shell, Pinctada maculata. The mud ark demonstrated the highest tolerance of silt loading (99% survival), followed by pearl shells and rock oysters (88 and 63% survival respectively).
Resumo:
Objectives : To develop a method to mark hatchery reared saucer scallops to distinguish them from animals derived from wild populations. Outcomes achieved : Juvenile saucer scallop (Amusium balloti) shells have been successfully marked en masse using 3 chemicals, namely alizarin red S, calcein and oxytetracycline (OTC). Considering spat survival, mark quality and mark duration collectively, the most successful chemical was OTC. Scallop spat immersed for three days in 200 or 300 mg L-1 OTC resulted in good mark incorporation and high survival. Tris was an effective means of buffering pH change during OTC treatment, with no apparent adverse effects to the scallops. The marks from OTC treatment were still visible in live scallops for at least 10 months, even with exposure to natural filtered light during that period. A second discernible shell mark was added 27 days after the first with no evident toxicity to the scallops. A simulated seabed system was designed which provide marked improvements in scallop juvenile survival and growth. Advice on shell marking has been given to QSS by DPI&F, and the first commercial trials have now commenced, with initial results showing successful marking of juvenile scallops at QSS. This research will allow the industry to monitor the survival, growth and movement of specific cohorts of deployed scallops. This will provide valuable feedback to assess the value of the ranching venture, to optimise release strategies, and to develop improved species management plans.
Resumo:
Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT) polymerization, to obtain monodisperse polymers of various molar masses and carrying dithiobenzoate end groups. Hence, particles protected either with PNIPAM, PNIPAM-AuNPs, or with a mixture of two polymers, PNIPAM/PS-AuNPs (i.e., amphiphilic gold nanoparticles), were prepared. The particles contain monodisperse polymer shells, though the cores are somewhat polydisperse. Aqueous PNIPAM-AuNPs prepared using a "grafting-from" technique, show thermo-responsive properties derived from the tethered PNIPAM chains. For PNIPAM-AuNPs prepared using a "grafting-to" technique, two-phase transitions of PNIPAM were observed in the microcalorimetric studies of the aqueous solutions. The first transition with a sharp and narrow endothermic peak occurs at lower temperature, and the second one with a broader peak at higher temperature. In the first transition PNIPAM segments show much higher cooperativity than in the second one. The observations are tentatively rationalized by assuming that the PNIPAM brush can be subdivided into two zones, an inner and an outer one. In the inner zone, the PNIPAM segments are close to the gold surface, densely packed, less hydrated, and undergo the first transition. In the outer zone, on the other hand, the PNIPAM segments are looser and more hydrated, adopt a restricted random coil conformation, and show a phase transition, which is dependent on both particle concentration and the chemical nature of the end groups of the PNIPAM chains. Monolayers of the amphiphilic gold nanoparticles at the air-water interface show several characteristic regions upon compression in a Langmuir trough at room temperature. These can be attributed to the polymer conformational transitions from a pancake to a brush. Also, the compression isotherms show temperature dependence due to the thermo-responsive properties of the tethered PNIPAM chains. The films were successfully deposited on substrates by Langmuir-Blodgett technique. The sessile drop contact angle measurements conducted on both sides of the monolayer deposited at room temperature reveal two slightly different contact angles, that may indicate phase separation between the tethered PNIPAM and PS chains on the gold core. The optical properties of amphiphilic gold nanoparticles were studied both in situ at the air-water interface and on the deposited films. The in situ SPR band of the monolayer shows a blue shift with compression, while a red shift with the deposition cycle occurs in the deposited films. The blue shift is compression-induced and closely related to the conformational change of the tethered PNIPAM chains, which may cause a decrease in the polarity of the local environment of the gold cores. The red shift in the deposited films is due to a weak interparticle coupling between adjacent particles. Temperature effects on the SPR band in both cases were also investigated. In the in situ case, at a constant surface pressure, an increase in temperature leads to a red shift in the SPR, likely due to the shrinking of the tethered PNIPAM chains, as well as to a slight decrease of the distance between the adjacent particles resulting in an increase in the interparticle coupling. However, in the case of the deposited films, the SPR band red-shifts with the deposition cycles more at a high temperature than at a low temperature. This is because the compressibility of the polymer coated gold nanoparticles at a high temperature leads to a smaller interparticle distance, resulting in an increase of the interparticle coupling in the deposited multilayers.
Resumo:
The relationship between sexual reproduction of littoral chydorid cladocerans (Anomopoda, Chydoridae) and environmental factors in aquatic ecosystems has been rarely studied, although the sexual behavior of some planktonic cladocerans is well documented. Ecological monitoring was used to study the relationship between climate-related and non-climatic environmental factors and chydorid sexual reproduction patterns in nine environmentally different lakes that were closely situated to each other in southern Finland. Furthermore, paleolimnological ephippium analysis was used to clarify how current sexual reproduction is reflected in surface sediments of the same nine lakes. Additionally, short sediment cores from two of the lakes were studied with ephippium analysis to examine how recent climate-related and non-climatic environmental changes were reflected in chydorid sexual reproduction. Ephippium analysis uses the subfossil shells of asexual individuals to represent asexual reproduction and the shells of sexual females, i.e. ephippia, to represent sexual reproduction. The relative proportion of ephippia of all chydorid species, i.e. total chydorid ephippia (TCE) indicates the relative proportion of sexual reproduction during the open-water season. This thesis is part of the EPHIPPIUM-project which aims to develop ephippium analysis towards a quantitative climate reconstruction tool. To be able to develop a valid climate model, the influence of the environmental stressors other than climate on contemporary sexual reproduction and its reflection in sediment assemblages must be clarified so they can be eliminated from the model. During contemporary monitoring a few sexual individuals were observed during summer, apparently forced to sexual reproduction by non-climatic local environmental factors, such as crowding or invertebrate predation. Monitoring also revealed that the autumnal chydorid sexual reproduction period was consistent between the different lakes and climate-related factors appeared to act as the main inducers and regulators of autumnal sexual reproduction. However, during autumn, chydorid species and populations among the lakes exhibited a wide variation in the intensity, induction time, and length of autumnal sexual reproduction. These variations apparently act as mechanisms for local adaptations due to the genetic variability provided by sexual reproduction that enhance the ecological flexibility of chydorid species, allowing them to inhabit a wide range of environments. A large variation was also detected in the abundance of parthenogenetic and gamogenetic individuals during the open-water season among the lakes. On the basis of surface sediment samples, the general level of the TCE is ca. 3-4% in southern Finland, reflecting an average proportion of sexual reproduction in this specific climate. The variation in the TCE was much lower than could be expected on the basis of the monitoring results. This suggests that some of the variation detected by monitoring may derive from differences between sampling sites and years smoothed out in the sediment samples, providing an average of the entire lake area and several years. The TCE is always connected to various ecological interactions in lake ecosystems and therefore is always lake-specific. Hypothetically, deterioration of climate conditions can be detected in the TCE as an increase in ephippia of all chydorid species, since a shortening open-water season is reflected in the relative proportions of the two reproduction modes. Such an increase was clearly detected for the time period of the Little Ice Age in a sediment core. The paleolimnological results also indicated that TCE can suddenly increase due to ephippia of one or two species, which suggests that at least some chydorids can somehow increase the production of resting eggs under local environmental stress. Thus, some environmental factors may act as species-specific environmental stressors. The actual mechanism of the increased sexual reproduction seen in sediments has been unknown but the present study suggests that the mechanism is probably the increased intensity of gamogenesis, i.e. that a larger proportion of individuals in autumnal populations reproduce sexually, which results in a larger proportion of ephippia in sediments and a higher TCE. The results of this thesis demonstrate the utility of ephippium analysis as a paleoclimatological method which may also detect paleolimnological changes by identifying species-specific environmental stressors. For a quantitative TCE-based climate reconstruction model, the natural variation in the TCE of surface sediments in different climates must be clarified with more extensive studies. In addition, it is important to recognize the lakes where the TCE is not only a reflection of the length of the open-water season, but is also non-climatically forced. The results of ephippium analysis should always be interpreted in a lake-specific manner and in the context of other paleoecological proxies.
Resumo:
Viral genomes are encapsidated within protective protein shells. This encapsidation can be achieved either by a co-condensation reaction of the nucleic acid and coat proteins, or by first forming empty viral particles which are subsequently packaged with nucleic acid, the latter mechanism being typical for many dsDNA bacteriophages. Bacteriophage PRD1 is an icosahedral, non-tailed dsDNA virus that has an internal lipid membrane, the hallmark of the Tectiviridae family. Although PRD1 has been known to assemble empty particles into which the genome is subsequently packaged, the mechanism for this has been unknown, and there has been no evidence for a separate packaging vertex, similar to the portal structures used for packaging in the tailed bacteriophages and herpesviruses. In this study, a unique DNA packaging vertex was identified for PRD1, containing the packaging ATPase P9, packaging factor P6 and two small membrane proteins, P20 and P22, extending the packaging vertex to the internal membrane. Lack of small membrane protein P20 was shown to totally abolish packaging, making it an essential part of the PRD1 packaging mechanism. The minor capsid proteins P6 was shown to be an important packaging factor, its absence leading to greatly reduced packaging efficiency. An in vitro DNA packaging mechanism consisting of recombinant packaging ATPase P9, empty procapsids and mutant PRD1 DNA with a LacZ-insert was developed for the analysis of PRD1 packaging, the first such system ever for a virus containing an internal membrane. A new tectiviral sequence, a linear plasmid called pBClin15, was identified in Bacillus cereus, providing material for sequence analysis of the tectiviruses. Analysis of PRD1 P9 and other putative tectiviral ATPase sequences revealed several conserved sequence motifs, among them a new tectiviral packaging ATPase motif. Mutagenesis studies on PRD1 P9 were used to confirm the significance of the motifs. P9-type putative ATPase sequences carrying a similar sequence motif were identified in several other membrane containing dsDNA viruses of bacterial, archaeal and eukaryotic hosts, suggesting that these viruses may have similar packaging mechanisms. Interestingly, almost the same set of viruses that were found to have similar putative packaging ATPases had earlier been found to share similar coat protein folds and capsid structures, and a common origin for these viruses had been suggested. The finding in this study of similar packaging proteins further supports the idea that these viruses are descendants of a common ancestor.
Resumo:
Symmetry is a key principle in viral structures, especially the protein capsid shells. However, symmetry mismatches are very common, and often correlate with dynamic functionality of biological significance. The three-dimensional structures of two isometric viruses, bacteriophage phi8 and the archaeal virus SH1 were reconstructed using electron cryo-microscopy. Two image reconstruction methods were used: the classical icosahedral method yielded high resolution models for the symmetrical parts of the structures, and a novel asymmetric in-situ reconstruction method allowed us to resolve the symmetry mismatches at the vertices of the viruses. Evidence was found that the hexameric packaging enzyme at the vertices of phi8 does not rotate relative to the capsid. The large two-fold symmetric spikes of SH1 were found not to be responsible for infectivity. Both virus structures provided insight into the evolution of viruses. Comparison of the phi8 polymerase complex capsid with those of phi6 and other dsRNA viruses suggests that the quaternary structure in dsRNA bacteriophages differs from other dsRNA viruses. SH1 is unusual because there are two major types of capsomers building up the capsid, both of which seem to be composed mainly of single beta-barrels perpendicular to the capsid surface. This indicates that the beta-barrel may be ancestral to the double beta-barrel fold.