933 resultados para Gas manufacture and works
Resumo:
I. The deteriorative power of conventional art over nations -- II. The unity of art -- III. Modern manufacture and design -- IV. Influence of imagination in architecture -- V. The work of iron in nature, art and policy.
Resumo:
Mode of access: Internet.
Resumo:
"Covering all Oklahoma oil and gas cases and all Federal cases from Oklahoma."
Resumo:
A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.
Resumo:
This thesis describes the study of various grating based optical fibre sensors for applications in refractive index sensing. The sensitivity of these sensors has been studied and in some cases enhanced using novel techniques. The major areas of development are as follows. The sensitivity of long period gratings (LPGs) to surrounding medium refractive index (SRI) for various periods was investigated. The most sensitive period of LPG was found to be around 160 µm and this was due to the core mode coupling to a single cladding mode but phase matching at two wavelength locations, creating two attenuation peaks, close to the waveguide dispersion turning point. Large angle tilted fibre gratings (TFGs) have similar behaviour to LPGs, in that they couple to the co-propagating cladding modes. The tilted structure of the index modulation within the core of the fibre gives rise to a polarisation dependency, differing the large angle TFG from a LPG. Since the large angle TFG couple to the cladding mode they are SRI sensitive, the sensitivity to SRI can be further increased through cladding etching using HF acid. The thinning of the cladding layer caused a reordering of the cladding modes and shifted to more SRI sensitive cladding modes as the investigation discovered. In a SRI range of 1.36 to 1.40 a sensitivity of 506.9 nm/URI was achieved for the etched large angle TFG, which is greater than the dual resonance LPG. UV inscribed LPGs were coated with sol-gel materials with high RIs. The high RI of the coating caused an increase in cladding mode effective index which in turn caused an increase in the LPG sensitivity to SRI. LPGs of various periods of LPG were coated with sol-gel TiO2 and the optimal thickness was found to vary for each period. By coating of the already highly SRI sensitive 160µm period LPG (which is a dual resonance) with a sol-gel TiO2, the SRI sensitivity was further increased with a peak value of 1458 nm/URI, which was an almost 3 fold increase compared to the uncoated LPG. LPGs were also inscribed using a femtosecond laser which produced a highly focused index change which was no uniform throughout the core of the optical fibre. The inscription technique gave rise to a large polarisation sensitivity and the ability to couple to multiple azimuthal cladding mode sets, not seen with uniform UV inscribed gratings. Through coupling of the core mode to multiple sets of cladding modes, attenuation peaks with opposite wavelength shifts for increasing SRI was observed. Through combining this opposite wavelength shifts, a SRI sensitivity was achieved greater than any single observed attenuations peak. The maximum SRI achieved was 1680 nm/URI for a femtosecond inscribed LPG of period 400 µm. Three different types of surface plasmon resonance (SPR) sensors with a multilayer metal top coating were investigated in D shape optical fibre. The sensors could be separated into two types, utilized a pre UV inscribed tilted Bragg grating and the other employed a post UV exposure to generate surface relief grating structure. This surface perturbation aided the out coupling of light from the core but also changed the sensing mechanism from SPR to localised surface plasmon resonance (LSPR). This greatly increased the SRI sensitivity, compared to the SPR sensors; with the gold coated top layer surface relief sensor producing the largest SRI sensitivity of 2111.5nm/URI was achieved. While, the platinum and silver coated top layer surface relief sensors also gave high SRI sensitivities but also the ability to produce resonances in air (not previously seen with the SPR sensors). These properties were employed in two applications. The silver and platinum surface relief devices were used as gas sensors and were shown to be capable of detecting the minute RI change of different gases. The calculated maximum sensitivities produced were 1882.1dB/URI and 1493.5nm/URI for silver and platinum, respectively. Using a DFB laser and power meter a cheap alternative approach was investigated which showed the ability of the sensors to distinguish between different gases and flow rates of those gases. The gold surface relief sensor was coated in a with a bio compound called an aptamer and it was able to detect various concentrations of a biological compound called Thrombin, ranging from 1mM to as low as 10fM. A solution of 2M NaCl was found to give the best stripping results for Thrombin from the aptamer and showed the reusability of the sensor. The association and disassociation constants were calculated to be 1.0638×106Ms-1 and 0.2482s-1, respectively, showing the high affinity of the Aptamer to thrombin. This supports existing working stating that aptamers could be alternative to enzymes for chemical detection and also helps to explain the low detection limit of the gold surface relief sensor.
Resumo:
Produced water constitutes the largest volume of waste from offshore oil and gas operations and is composed of a wide range of organic and inorganic compounds. Although treatment processes have to meet strict oil in water regulations, the definition of “oil” is a function of the analysis process and may include aliphatic hydrocarbons which have limited environmental impact due to degradability whilst ignoring problematic dissolved petroleum species. This thesis presents the partitioning behavior of oil in produced water as a function of temperature and salinity to identify compounds of environmental concern. Phenol, p-cresol, and 4-tert-butylphenol were studied because of their xenoestrogenic power; other compounds studied are polycyclic aromatic hydrocarbon PAHs which include naphthalene, fluorene, phenanthrene, and pyrene. Partitioning experiments were carried out in an Innova incubator for 48 hours, temperature was varied from 4゚C to 70゚C, and two salinity levels of 46.8‰ and 66.8‰ were studied. Results obtained showed that the dispersed oil concentration in the water reduces with settling time and equilibrium was attained at 48 h settling time. Polycyclic aromatic hydrocarbons (PAHs) partitions based on dispersed oil concentration whereas phenols are not significantly affected by dispersed oil concentration. Higher temperature favors partitioning of PAHs into the water phase. Salinity has negligible effect on partitioning pattern of phenols and PAHs studied. Simulation results obtained from the Aspen HYSYS model shows that temperature and oil droplet distribution greatly influences the efficiency of produced water treatment system.
Resumo:
Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.
The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.
I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.
I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.
Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.
In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.
Resumo:
The aim of this project is to carry out a linguistic analysis of a group of modern and contemporary narratives written by authors from the same Italian region: Piedmont. The novels and short stories examined stand out for the intriguing ways in which they move between a variety of idioms – Italian, Piedmontese dialects, English and pastiches, with some rare excursions into French. A sociolinguistic study and an overview of political changes that Piedmont underwent from the sixteenth to the twenty-first centuries are provided, with the purpose of outlining the region’s sociogeographical and historical background which can be seen to have fostered multilingualism in a group of writers. With the support of linguistic studies and philosophical theories on the relation between identity, alterity and language (such as Edwards’s Language and Identity and Bakhtin’s reflections on language), I then elucidate the presence of diverse linguistic varieties in selected narratives by Cesare Pavese, Beppe Fenoglio, Primo Levi, Nanni Balestrini, Fruttero & Lucentini, Benito Mazzi and Younis Tawfik. In other words, my purpose is to explain the reasons for multilingualism in each writer, as well as to underscore the ideological positions which lie behind the linguistic strategies of the authors. With this study I attempt to fill a gap and cast new light on Piedmontese literature. Although some critical studies on the use of dialect or English exist on individual authors and works (e.g. Meddemmem on Fenoglio’s use of English and Beccaria on Pavese’s inclusion of Piedmontese dialect), and some important contributions to the history of Piedmontese literature have appeared in print, to date no current, systematic study that compares different Piedmontese writers under the language/identity theme has been published. The study concludes with a summary of the evolution of plurilingualism in Piedmont and highlights the common trends in the use of multiple linguistic varieties as tools for both social demarcation and an opening up to alternative, marginalised andforeign cultures.
Resumo:
Ne, Ar, Kr, Xe, and K2O were measured in representative samples of holocrystalline basalt from DSDP Hole 504B. No hiatus in inert gas abundance is recognized at the base of the "oxic" alteration zone and the extent rather than the nature of alteration appears to determine these abundances. When the inert gas abundances are separately plotted against K2O, two distinct trends of loss emerge, one for alteration involving K-gain, the other for K-loss. Apparent whole-rock K-Ar ages are anomalous in the upper 50 m of basement, and below 300 m sub-basement. In the intervening zone of basement, celadonization adds sufficient potassium and eliminates enough "primary" 40Ar early in the history of the basalts for "excess" 40Ar to become subordinate to radiogenic 40Ar in basalts showing potassium enrichment greater than 0.2%. Stratigraphically correct K-Ar ages are obtained, therefore, from K-enriched basalts of the oxic alteration zone.
Resumo:
This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.
Resumo:
A plasma gas bubble-in-liquid method for high production of selectable reactive species using a nanosecond pulse generator has been developed. The gas of choice is fed through a hollow needle in a point-to-plate bubble discharge, enabling improved selection of reactive species. The increased interface reactions, between the gas-plasma and water through bubbles, give higher productivity. H2O2 was the predominant species produced using Ar plasma, while predominantly and NO2 were generated using air plasma, in good agreement with the observed emission spectra. This method has nearly 100% selectivity for H2O2, with seven times higher production, and 92% selectivity for , with nearly twice the production, compared with a plasma above the water.
Resumo:
MELO, Dulce Maria de Araújo et al. Evaluation of the Zinox and Zeolite materials as adsorbents to remove H2S from natural gas. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, Estados Unidos, v. 272, p. 32-36, 2006.
Resumo:
Background and Problem: Sustainability reporting is a growing trend in the society. One of the most exposed industries to environmental matters is the oil and gas industry, which commit to sustainability reporting in order to deal with the industry’s destructive operations. The Global Reporting Initiative (GRI) provides voluntary guidelines in sustainability reporting, which increase transparency for the company’s stakeholders. However, it is controversial that the oil and gas industry put a great effort into sustainability reporting even though the industry is environmentally destructive. This gap is interesting to investigate and will contribute to the academic discussion. Therefore, this thesis will focus on the sustainability reporting in the oil and gas industry and to what extent the industry actually discloses material environmental information about their operations. Purpose: The purpose of this thesis is to examine how the sustainability reporting has changed in the oil and gas industry in Europe. This is performed from a stakeholder perspective. Further, it aims to investigate how oil and gas companies have followed the GRI guidelines and how the reporting has changed over time. Method: A quantitative method is used in order to answer the research questions. The data sample is based on oil and gas companies reporting according to the GRI framework during year 2012 to year 2014. The empirical data is gathered from the studied companies’ environmental category in their sustainability reports. Further, a content analysis technique, with a coding scheme, was set up to interpret and analyse the information. To enable an easy overview of the findings, the relevant data is presented in tables and diagrams. Empirical Findings and Conclusion: The majority of the studied companies have increased their level of compliance in the environmental category. Although, the majority of the companies have increased their reporting, the compliance level differs between the companies. The most reported sectors are the; “Water”, “Biodiversity”, “Emissions”, “Effluents and Waste”, “Compliance”, and “Overall”. Further, the empirical findings show that there is an overall increase in the amount of disclosed information per indicator. The conclusion of this thesis is that the environmental disclosures have increased in the oil and gas industry from year 2012 to 2014.
Resumo:
On 28 July 2010, the Nigerian Federal Executive Council approved January 1, 2012 as the effective date for the convergence of Nigerian Statement of Accounting Standards (SAS) or Nigerian GAAP (NG-GAAP) with International Financial Reporting Standards (IFRS). By this pronouncement, all publicly listed companies and significant public interest entities in Nigeria were statutorily required to issue IFRS based financial statements for the year ended December, 2012. This study investigates the impact of the adoption of IFRS on the financial statements of Nigerian listed Oil and Gas entities using six years of data which covers three years before and three years after IFRS adoption in Nigeria and other African countries. First, the study evaluates the impact of IFRS adoption on the Exploration and Evaluation (E&E) expenditures of listed Oil and Gas companies. Second, it examines the impact of IFRS adoption on the provision for decommissioning of Oil and Gas installations and environmental rehabilitation expenditures. Third, the study analyses the impact of the adoption of IFRS on the average daily Crude Oil production cost per Barrel. Fourth, it examines the extent to which the adoption and implementation of IFRS affects the Key Performance Indicators (KPIs) of listed Oil and Gas companies. The study further explores the impact of IFRS adoption on the contractual relationships between Nigerian Government and Oil and Gas companies in terms of Joint Ventures (JVs) and Production Sharing Contracts (PSCs) as it relates to taxes, royalties, bonuses and Profit Oil Split. A Paired Samples t-test, Wilcoxon Signed Rank test and Gray’s (Gray, 1980) Index of Conservatism analyses were conducted simultaneously where the accounting numbers, financial ratios and industry specific performance measures of GAAP and IFRS were computed and analysed and the significance of the differences of the mean, median and Conservatism Index values were compared before and after IFRS adoption. Questionnaires were then administered to the key stakeholders in the adoption and implementation of IFRS and the responses collated and analysed. The results of the analyses reveal that most of the accounting numbers, financial ratios and industry specific performance measures examined changed significantly as a result of the transition from GAAP to IFRS. The E&E expenditures and the mean cost of Crude Oil production per barrel of Oil and Gas companies increased significantly. The GAAP values of inventories, GPM, ROA, Equity and TA were also significantly different from the IFRS values. However, the differences in the provision for decommissioning expenditures were not statistically significant. Gray’s (Gray, 1980) Conservatism Index shows that Oil and Gas companies were more conservative under GAAP when compared to the IFRS regime. The Questionnaire analyses reveal that IFRS based financial statements are of higher quality, easier to prepare and present to management and easier to compare among competitors across the Oil and Gas sector but slightly more difficult to audit compared to GAAP based financial statements. To my knowledge, this is the first empirical research to investigate the impact of IFRS adoption on the financial statements of listed Oil and Gas companies. The study will therefore make an enormous contribution to academic literature and body of knowledge and void the existing knowledge gap regarding the impact and implications of IFRS adoption on the financial statements of Oil and Gas companies.
Resumo:
MELO, Dulce Maria de Araújo et al. Evaluation of the Zinox and Zeolite materials as adsorbents to remove H2S from natural gas. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, Estados Unidos, v. 272, p. 32-36, 2006.