783 resultados para Fieldwork Learning Framework
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Structuring integrated social-ecological systems (SES) research remains a core challenge for achieving sustainability. Numerous concepts and frameworks exist, but there is a lack of mutual learning and orientation of knowledge between them. We focus on two approaches in particular: the ecosystem services concept and Elinor Ostrom’s diagnostic SES framework. We analyze the strengths and weaknesses of each and discuss their potential for mutual learning. We use knowledge types in sustainability research as a boundary object to compare the contributions of each approach. Sustainability research is conceptualized as a multi-step knowledge generation process that includes system, target, and transformative knowledge. A case study of the Southern California spiny lobster fishery is used to comparatively demonstrate how each approach contributes a different lens and knowledge when applied to the same case. We draw on this case example in our discussion to highlight potential interlinkages and areas for mutual learning. We intend for this analysis to facilitate a broader discussion that can further integrate SES research across its diverse communities.
Resumo:
A lightweight Java application suite has been developed and deployed allowing collaborative learning between students and tutors at remote locations. Students can engage in group activities online and also collaborate with tutors. A generic Java framework has been developed and applied to electronics, computing and mathematics education. The applications are respectively: (a) a digital circuit simulator, which allows students to collaborate in building simple or complex electronic circuits; (b) a Java programming environment where the paradigm is behavioural-based robotics, and (c) a differential equation solver useful in modelling of any complex and nonlinear dynamic system. Each student sees a common shared window on which may be added text or graphical objects and which can then be shared online. A built-in chat room supports collaborative dialogue. Students can work either in collaborative groups or else in teams as directed by the tutor. This paper summarises the technical architecture of the system as well as the pedagogical implications of the suite. A report of student evaluation is also presented distilled from use over a period of twelve months. We intend this suite to facilitate learning between groups at one or many institutions and to facilitate international collaboration. We also intend to use the suite as a tool to research the establishment and behaviour of collaborative learning groups. We shall make our software freely available to interested researchers.
Resumo:
Com um número cada vez maior de cidadãos a viver em grandes aglomerados urbanos, as cidades necessitam de se adaptar e tornar mais inteligentes por forma a serem sustentáveis. Desta forma, o conceito de smart city implica a integração de várias dimensões da gestão da cidade, mediante uma abordagem integrada e sustentada, criando um novo mercado per si. Mas, para responder a estas necessidades e conquistar este novo mercado, as empresas têm que se organizar por forma a sustentar as suas decisões estratégicas com ferramentas que permitem a análise e avaliação deste novo paradigma. Baseado nos conceitos de smart cities/cidades inteligentes, este trabalho desenvolve um conjunto de ferramentas que permitem a análise e avaliação de novos mercados pela empresa PTInovação, criando um modelo para a implementação de um mapa de calor/heat map que apresenta as cidades com maior potencial de mercado a nível mundial. Com base neste modelo, é então efetuada uma instanciação do modelo que permite analisar 7 casos diferentes de cidades localizadas na América, África, Ásia e Europa. A partir da análise realizada, é efetuado um caso de estudo para a cidade de Cartagena das Índias, na Colômbia. Este caso de estudo efetua a análise do portfólio de oferta da PTInovação, estuda as necessidades específicas dos utilizadores locais e analisa os potenciais competidores no mercado local, permitindo a realização de uma análise SWOT/TOWS que induz a criação de um plano de ação que permite mapear o processo de entrada da empresa neste mercado.
Resumo:
The work presents a theoretical framework for the evaluation of e-Teaching that aims at positioning the online activities designed and developed by the teacher as to the Learning, Interaction and Technology Dimensions. The theoretical research that underlies the study was developed reflecting current thinking on the promotion of quality of teaching and of the integration of information and communication tools into the curriculum in Higher Education (HE), i.e., bearing in mind some European guidelines and policies on this subject. This way, an answer was sought to be given to one of the aims put forward in this study, namely to contribute towards the development of a conceptual framework to support research on evaluation of e-teaching in the context of HE. Based on the theoretical research carried out, an evaluation tool (SCAI) was designed, which integrates the two questionnaires developed to collect the teachers' and the students' perceptions regarding the development of e-activities. Consequently, an empirical study was structured and carried out, allowing SCAI tool to be tested and validated in real cases. From the comparison of the theoretical framework established and the analysis of the data obtained, we found that the differences in teaching should be valued and seen as assets by HE institutions rather than annihilated in a globalizing perspective.
Resumo:
Certain environments can inhibit learning and stifle enthusiasm, while others enhance learning or stimulate curiosity. Furthermore, in a world where technological change is accelerating we could ask how might architecture connect resource abundant and resource scarce innovation environments? Innovation environments developed out of necessity within urban villages and those developed with high intention and expectation within more institutionalized settings share a framework of opportunity for addressing change through learning and education. This thesis investigates formal and informal learning environments and how architecture can stimulate curiosity, enrich learning, create common ground, and expand access to education. The reason for this thesis exploration is to better understand how architects might design inclusive environments that bring people together to build sustainable infrastructure encouraging innovation and adaptation to change for years to come. The context of this thesis is largely based on Colin McFarlane’s theory that the “city is an assemblage for learning” The socio-spatial perspective in urbanism, considers how built infrastructure and society interact. Through the urban realm, inhabitants learn to negotiate people, space, politics, and resources affecting their daily lives. The city is therefore a dynamic field of emergent possibility. This thesis uses the city as a lens through which the boundaries between informal and formal logics as well as the public and private might be blurred. Through analytical processes I have examined the environmental devices and assemblage of factors that consistently provide conditions through which learning may thrive. These parameters that make a creative space significant can help suggest the design of common ground environments through which innovation is catalyzed.
Resumo:
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Resumo:
Problem This dissertation presents a literature-based framework for communication in science (with the elements partners, purposes, message, and channel), which it then applies in and amends through an empirical study of how geoscientists use two social computing technologies (SCTs), blogging and Twitter (both general use and tweeting from conferences). How are these technologies used and what value do scientists derive from them? Method The empirical part used a two-pronged qualitative study, using (1) purposive samples of ~400 blog posts and ~1000 tweets and (2) a purposive sample of 8 geoscientist interviews. Blog posts, tweets, and interviews were coded using the framework, adding new codes as needed. The results were aggregated into 8 geoscientist case studies, and general patterns were derived through cross-case analysis. Results A detailed picture of how geoscientists use blogs and twitter emerged, including a number of new functions not served by traditional channels. Some highlights: Geoscientists use SCTs for communication among themselves as well as with the public. Blogs serve persuasion and personal knowledge management; Twitter often amplifies the signal of traditional communications such as journal articles. Blogs include tutorials for peers, reviews of basic science concepts, and book reviews. Twitter includes links to readings, requests for assistance, and discussions of politics and religion. Twitter at conferences provides live coverage of sessions. Conclusions Both blogs and Twitter are routine parts of scientists' communication toolbox, blogs for in-depth, well-prepared essays, Twitter for faster and broader interactions. Both have important roles in supporting community building, mentoring, and learning and teaching. The Framework of Communication in Science was a useful tool in studying these two SCTs in this domain. The results should encourage science administrators to facilitate SCT use of scientists in their organization and information providers to search SCT documents as an important source of information.
Resumo:
The aim of this study was to model the process of development for an Online Learning Resource (OLR) by Health Care Professionals (HCPs) to meet lymphoedema-related educational needs, within an asset-based management context. Previous research has shown that HCPs have unmet educational needs in relation to lymphoedema but details on their specific nature or context were lacking. Against this background, the study was conducted in two distinct but complementary phases. In Phase 1, a national survey was conducted of HCPs predominantly in community, oncology and palliative care services, followed by focus group discussions with a sample of respondents. In Phase 2, lymphoedema specialists (LSs) used an action research approach to design and implement an OLR to meet the needs identified in Phase 1. Study findings were analysed using descriptive statistics (Phase 1), and framework, thematic and dialectic analysis to explore their potential to inform future service development and education theory. Unmet educational need was found to be specific to health care setting and professional group. These resulted in HCPs feeling poorly-equipped to diagnose and manage lymphoedema. Of concern, when identified, lymphoedema was sometimes buried for fear of overwhelming stretched services. An OLR was identified as a means of addressing the unmet educational needs. This was successfully developed and implemented with minimal additional resources. The process model created has the potential to inform contemporary leadership theory in asset-based management contexts. This doctoral research makes a timely contribution to leadership theory since the resource constraints underpinning much of the contribution has salience to current public services. The process model created has the potential to inform contemporary leadership theory in asset-based management contexts. Further study of a leadership style which incorporates cognisance of Cognitive Load Theory and Self-Determination Theory is suggested. In addition, the detailed reporting of process and how this facilitated learning for participants contributes to workplace education theory
Resumo:
Alternate Reality Game (ARG) represent a new genre of transmedia practice where players hunt for scattered clues, make sense of disparate information, and solve puzzles to advance an ever-evolving storyline. Players participate in ARGs using multiple communications technologies, ranging from print materials to mobile devices. However, many interaction design challenges must be addressed to weave these everyday communication tools together into an immersive, participatory experience. Transmedia design is not an everyday process. Designers must create and connect story bits across multiple media (video, audio, text) and multiple platforms (phones, computers, physical spaces). Furthermore, they must engage with players of varying skill levels. Few studies to-date have explored the design process of ARGs in learning contexts. Fewer still have focused on challenges involved in designing for youth (13-17 years old). In this study, I explore the process of designing ARGs as vehicles for promoting information literacy and participatory culture for adolescents (13-17 years old). Two ARG design scenarios, distinguished by target learning environment (formal and informal context) and target audience (adolescents), comprise the two cases that I examine. Through my analysis of these two design cases, I articulate several unique challenges faced by designers who create interactive, transmedia stories for – and with – youth. Drawing from these design challenges, I derive a repertoire of design strategies that future designers and researchers may use to create and implement ARGs for teens in learning contexts. In particular, I propose a narrative design framework that allows for the categorization of ARGs as storytelling constructs that lie along a continuum of participation and interaction. The framework can serve as an analytic tool for researchers and a guide for designers. In addition, I establish a framework of social roles that designers may employ to craft transmedia narratives before live launch and to promote and scaffold player participation after play begins. Overall, the contributions of my study include theoretical insights that may advance our understanding of narrative design and analysis as well as more practical design implications for designers and practitioners seeking to incorporate transmedia features into learning experiences that target youth.
Resumo:
In most e-learning scenarios, communication and on-line collaboration is seen as an add-on feature to resource based learning. This paper will endeavour to present a pedagogical framework for inverting this view and putting communities of practice as the basic paradigm for e-learning. It will present an approach currently being used in the development of a virtual Radiopharmacy community, called VirRAD, and will discuss how theory can lead to an instructional design approach to support technologically enhanced learning.(DIPF/Orig.)
Resumo:
This dissertation investigates the connection between spectral analysis and frame theory. When considering the spectral properties of a frame, we present a few novel results relating to the spectral decomposition. We first show that scalable frames have the property that the inner product of the scaling coefficients and the eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result when an approximate scaling is obtained. We then focus on the optimization problems inherent to the scalable frames by first showing that there is an equivalence between scaling a frame and optimization problems with a non-restrictive objective function. Various objective functions are considered, and an analysis of the solution type is presented. For linear objectives, we can encourage sparse scalings, and with barrier objective functions, we force dense solutions. We further consider frames in high dimensions, and derive various solution techniques. From here, we restrict ourselves to various frame classes, to add more specificity to the results. Using frames generated from distributions allows for the placement of probabilistic bounds on scalability. For discrete distributions (Bernoulli and Rademacher), we bound the probability of encountering an ONB, and for continuous symmetric distributions (Uniform and Gaussian), we show that symmetry is retained in the transformed domain. We also prove several hyperplane-separation results. With the theory developed, we discuss graph applications of the scalability framework. We make a connection with graph conditioning, and show the in-feasibility of the problem in the general case. After a modification, we show that any complete graph can be conditioned. We then present a modification of standard PCA (robust PCA) developed by Cand\`es, and give some background into Electron Energy-Loss Spectroscopy (EELS). We design a novel scheme for the processing of EELS through robust PCA and least-squares regression, and test this scheme on biological samples. Finally, we take the idea of robust PCA and apply the technique of kernel PCA to perform robust manifold learning. We derive the problem and present an algorithm for its solution. There is also discussion of the differences with RPCA that make theoretical guarantees difficult.
Resumo:
Critical infrastructures are based on complex systems that provide vital services to the nation. The complexities of the interconnected networks, each managed by individual organisations, if not properly secured, could offer vulnerabilities that threaten other organisations’ systems that depend on their services. This thesis argues that the awareness of interdependencies among critical sectors needs to be increased. Managing and securing critical infrastructure is not isolated responsibility of a government or an individual organisation. There is a need for a strong collaboration among critical service providers of public and private organisations in protecting critical information infrastructure. Cyber exercises have been incorporated in national cyber security strategies as part of critical information infrastructure protection. However, organising a cyber exercise involved multi sectors is challenging due to the diversity of participants’ background, working environments and incidents response policies. How well the lessons learned from the cyber exercise and how it can be transferred to the participating organisations is still a looming question. In order to understand the implications of cyber exercises on what participants have learnt and how it benefits participants’ organisation, a Cyber Exercise Post Assessment (CEPA) framework was proposed in this research. The CEPA framework consists of two parts. The first part aims to investigate the lessons learnt by participants from a cyber exercise using the four levels of the Kirkpatrick Training Model to identify their perceptions on reaction, learning, behaviour and results of the exercise. The second part investigates the Organisation Cyber Resilience (OCR) of participating sectors. The framework was used to study the impact of the cyber exercise called X Maya in Malaysia. Data collected through interviews with X Maya 5 participants were coded and categorised based on four levels according to the Kirkpatrick Training Model, while online surveys distributed to ten Critical National Information Infrastructure (CNII) sectors participated in the exercise. The survey used the C-Suite Executive Checklist developed by World Economic Forum in 2012. To ensure the suitability of the tool used to investigate the OCR, a reliability test conducted on the survey items showed high internal consistency results. Finally, individual OCR scores were used to develop the OCR Maturity Model to provide the organisation cyber resilience perspectives of the ten CNII sectors.
Resumo:
This commentary will use recent events in Cornwall to highlight the ongoing abuse of adults with learning disabilities in England. It will critically explore how two parallel policy agendas – namely, the promotion of choice and independence for adults with learning disabilities and the development of adult protection policies – have failed to connect, thus allowing abuse to continue to flourish. It will be argued that the abuse of people with learning disabilities can only be minimised by policies which reflect an understanding that choice and independence must necessarily be mediated by effective adult protection measures. Such protection needs to include not only an appropriate regulatory framework, access to justice and well-qualified staff, but also a more critical and reflective approach to the current orthodoxy which promotes choice and independence as the only acceptable goals for any person with a learning disability.
Resumo:
The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.