883 resultados para Fatigue crack growth behavior
Resumo:
The effects of 3 temperature treatments on activity, feeding, growth, development and survival of young milkfish (Chanos chanos) were investigated under laboratory conditions. It is believed that the results may be applied to develop a land-based mass production technology in rearing milkfish fry to fingerlings.
Resumo:
This paper presents a study of the transformation of high-temperature AlN (HT-AlN) interlayer (IL) and its effect on the strain relaxation of Al0.25Ga0.75N/HT-AlN/GaN. The HT-AlN IL capped with Al0.25Ga0.75N transforms into AlGaN IL in which the Al composition increases with the HT-AlN IL thickness while the total Ga content keeps nearly constant. During the HT-AlN IL growth on GaN, the tensile stress is relieved through the formation of V trenches. The filling up of the V trenches by the subsequent Al0.25Ga0.75N growth is identified as the Ga source for the IL transformation, whose effect is very different from a direct growth of HT-AlGaN IL. The a-type dislocations generated during the advancement of V trenches and their filling up propagate into the Al0.25Ga0.75N overlayer. The a-type dislocation density increases dramatically with the IL thickness, which greatly enhances the strain relaxation of Al0.25Ga0.75N. (c) 2008 American Institute of Physics.
Resumo:
GaN epilayers were grown on Si(111) substrate by metalorganic chemical vapor deposition. By using the Al-rich AlN buffer which contains Al beyond stoichiometry, crack-free GaN epilayers with 1 mum thickness were obtained. Through x-ray diffraction (XRD) and secondary ion mass spectroscopy analyses, it was found that a lot of Al atoms have diffused into the under part of the GaN epilayer from the Al-rich AlN buffer, which results in the formation of an AlxGa1-xN layer at least with 300 nm thickness in the 1 mum thick GaN epilayer. The Al fraction x was estimated by XRD to be about 2.5%. X-ray photoelectron spectroscopy depth analysis was also applied to investigate the stoichiometry in the Al-rich buffer before GaN growth. It is suggested that the underlayer AlxGa1-xN originated from Al diffusion probably provides a compressive stress to the upper part of the GaN epilayer, which counterbalances a part of tensile stress in the GaN epilayer during cooling down and consequently reduces the cracks of the film effectively. The method using the Al diffusion effect to form a thick AlGaN layer is really feasible to achieve the crack-free GaN films and obtain a high crystal quality simultaneously. (C) 2004 American Institute of Physics.
Resumo:
We have studied the effect of low-temperature-deposited (LT) and high-temperature-deposited (FIT) AlN interlayer with various thickness on AlGaN film grown on GaN using c-plane sapphire as substrate. All the Al0.25Ga0.75N films thicker than 1 mum with LT-AlN interlayer or with HT-AlN interlayer were free of cracks, however, their surfaces were different: the Al0.25Ga0.75N films with LT-AlN interlayer showed smooth surface, while those with HT-AlN interlayer exhibit rough surface morphology. The results of X-ray double crystal diffraction and Rutherford backscattering showed that all of the AlGaN films were under compressive strain in the parallel direction. The compressive strain resulted from the effect of interlayer-induced stress relieving and the thermal mismatch for the samples with LT-AlN interlayer, and it was due to the thermal mismatch between AlGaN and the underlying layers for those with HT-AlN interlayer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ge composition dependence on the Ge cell temperature has been studied during the growth of Si1-xGex by disilane and solid Ge molecular beam epitaxy at a substrate temperature of 500 degrees C. It is found that the composition x increases and then saturates when the Ge cell temperature increases, which is different from the composition-dependent behavior in growth at high temperature as well as in growth by molecular beam epitaxy using disilane and germane. The enhanced hydrogen desorption from a Ge site alone cannot account for this abnormal composition-variation behavior. We attribute this behavior to the increase of rate constant of H desorption on a Si site when the Ge cell temperature increases.
Resumo:
High quality crack free GaN epilayers were grown on Si(111) substrates. Low temperature AlN interlayer grown under low V/III ratio was used to effectively eliminate the formation of micro-cracks. It is found that tensile stress in the GaN epilayer decreases as the N/Al ratio decreases used for AlN interlayer growth. The high optical and structural qualities of the GaN/Si samples were characterized by RBS, PL and XRD measurements. The RT-PL FWHM of the band edge emission is only 39.5meV The XRD FWHM of the GaN/Si sample is 8.2arcmin, which is among the best values ever reported.
Resumo:
We systematically investigated the weak epitaxy growth (WEG) behavior of a series of planar phthalocyanine compounds (MPc), i.e., metal-free phthalocyanine (H2PC), nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), iron phthalocyanine (FePc); cobalt phthalocyanine (CoPc), grown on a p-sexiphenyl (p-6P) monolayer film by selected area electron diffraction (SAED) and atomic force microscopy (AFM). Two types of epitaxial relations, named as incommensurate epitaxy and commensurate epitaxy, were identified between phthalocyanine compounds and the substrate of the p-6P film.
Resumo:
Flexural fatigue tests were conducted on injection-molded short fiber composites, carbon fiber/poly(phenylene ether ketone) (PEK-C) and glass fiber/PEK-C (with addition of polyphenylene sulfide for improving adhesion between matrix and fibers), using four-point bending at stress ratio of 0.1. The fatigue behavior of these materials was presented. By comparing the S-N curves and analyzing the fracture surfaces of the two materials, the similarity and difference of the failure mechanisms in the two materials were discussed. It is shown that the flexural fatigue failure of the studied materials is governed by their respective tensile properties. The matrix yielding is main failure mechanism at high stress, while at lower stress the fatigue properties appear fiber and interface dominated. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The present work investigates the effects of cyclic fatigue loading on the residual properties of an injection-molded composite, carbon-fiber-reinforced poly(phenylene ether ketone) (CF/PEK-C), and damage development in this material under fatigue lending. Test specimens, which had been conditioned to various preselected fatigue damage stages, were measured for their residual properties. The results indicated that cyclic fatigue loading alters the constitutive behavior of the injection-molded composite, especially in the non-linear portion of the stress/strain curve. The residual strength decreases with increase in the number of fatigue cycles as a consequence of the accumulation of fatigue damage, which is dominated by the growth of microcracks. While the residual modulus increases slightly with cyclic fatigue loading, this is probably due to the oriented hardening resulting from creep deformation which is induced during cyclic loading. (C) 1997 Elsevier Science Limited.
Resumo:
China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10−3 s−1. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M23C6 carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.
Variable mixed-mode delamination in composite laminates under fatigue conditions: testing & analysis
Resumo:
La majoria de les fallades en elements estructurals són degudes a càrrega per fatiga. En conseqüència, la fatiga mecànica és un factor clau per al disseny d'elements mecànics. En el cas de materials compòsits laminats, el procés de fallada per fatiga inclou diferents mecanismes de dany que resulten en la degradació del material. Un dels mecanismes de dany més importants és la delaminació entre capes del laminat. En el cas de components aeronàutics, les plaques de composit estan exposades a impactes i les delaminacions apareixen facilment en un laminat després d'un impacte. Molts components fets de compòsit tenen formes corbes, superposició de capes i capes amb diferents orientacions que fan que la delaminació es propagui en un mode mixt que depen de la grandària de la delaminació. És a dir, les delaminacions generalment es propaguen en mode mixt variable. És per això que és important desenvolupar nous mètodes per caracteritzar el creixement subcrític en mode mixt per fatiga de les delaminacions. El principal objectiu d'aquest treball és la caracterització del creixement en mode mixt variable de les delaminacions en compòsits laminats per efecte de càrregues a fatiga. Amb aquest fi, es proposa un nou model per al creixement per fatiga de la delaminació en mode mixt. Contràriament als models ja existents, el model que es proposa es formula d'acord a la variació no-monotònica dels paràmetres de propagació amb el mode mixt observada en diferents resultats experimentals. A més, es du a terme un anàlisi de l'assaig mixed-mode end load split (MMELS), la característica més important del qual és la variació del mode mixt a mesura que la delaminació creix. Per a aquest anàlisi, es tenen em compte dos mètodes teòrics presents en la literatura. No obstant, les expressions resultants per l'assaig MMELS no són equivalents i les diferències entre els dos mètodes poden ser importants, fins a 50 vegades. Per aquest motiu, en aquest treball es porta a terme un anàlisi alternatiu més acurat del MMELS per tal d'establir una comparació. Aquest anàlisi alternatiu es basa en el mètode dels elements finits i virtual crack closure technique (VCCT). D'aquest anàlisi en resulten importants aspectes a considerar per a la bona caracterització de materials utilitzant l'assaig MMELS. Durant l'estudi s'ha dissenyat i construït un utillatge per l'assaig MMELS. Per a la caracterització experimental de la propagació per fatiga de delaminacions en mode mixt variable s'utilitzen diferents provetes de laminats carboni/epoxy essencialment unidireccionals. També es du a terme un anàlisi fractogràfic d'algunes de les superfícies de fractura per delaminació. Els resultats experimentals són comparats amb les prediccions del model proposat per la propagació per fatiga d'esquerdes interlaminars.
Resumo:
Genetic studies of autism spectrum conditions (ASC) have mostly focused on the "low functioning" severe clinical subgroup, treating it as a rare disorder. However, ASC is now thought to be relatively common ( approximately 1%), and representing one end of a quasi-normal distribution of autistic traits in the general population. Here we report a study of common genetic variation in candidate genes associated with autistic traits and Asperger syndrome (AS). We tested single nucleotide polymorphisms in 68 candidate genes in three functional groups (sex steroid synthesis/transport, neural connectivity, and social-emotional responsivity) in two experiments. These were (a) an association study of relevant behavioral traits (the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ)) in a population sample (n=349); and (b) a case-control association study on a sample of people with AS, a "high-functioning" subgroup of ASC (n=174). 27 genes showed a nominally significant association with autistic traits and/or ASC diagnosis. Of these, 19 genes showed nominally significant association with AQ/EQ. In the sex steroid group, this included ESR2 and CYP11B1. In the neural connectivity group, this included HOXA1, NTRK1, and NLGN4X. In the socio-responsivity behavior group, this included MAOB, AVPR1B, and WFS1. Fourteen genes showed nominally significant association with AS. In the sex steroid group, this included CYP17A1 and CYP19A1. In the socio-emotional behavior group, this included OXT. Six genes were nominally associated in both experiments, providing a partial replication. Eleven genes survived family wise error rate (FWER) correction using permutations across both experiments, which is greater than would be expected by chance. CYP11B1 and NTRK1 emerged as significantly associated genes in both experiments, after FWER correction (P<0.05). This is the first candidate-gene association study of AS and of autistic traits. The most promising candidate genes require independent replication and fine mapping.
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.