959 resultados para Experimental animal models


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Alcohol consumption is inversely correlated with the incidence of cardiovascular disease. It is thought that red wine is specifically responsible for these cardiovascular benefits, due to its ability to reduce vascular inflammation, facilitate vasorelaxation, and inhibit angiogenesis. This is because of its high polyphenolic content. Resveratrol is the main biologically active polyphenol within red wine. Owing to its vascular-enhancing properties, resveratrol may be effective in the microcirculation of the eye, thereby helping prevent ocular diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Such conditions are accountable for worldwide prevalence of visual loss. Method: A review of the relevant literature was conducted on the ScienceDirect, Web of Science, and PubMed databases. Key words used to carry out the searches included 'red wine', 'polyphenols', 'resveratrol', 'eye' and 'ocular'. Articles relating to the effects of resveratrol on the eye were reviewed. Results: The protective effects of resveratrol within the eye are extensive. It has been demonstrated to have anti-oxidant, anti-apoptotic, anti-tumourogenic, anti-inflammatory, anti-angiogenic and vasorelaxant properties. There are potential benefits of resveratrol supplementation across a wide range of ocular diseases. The molecular mechanisms underlying these protective actions are diverse. Conclusion: Evidence suggests that resveratrol may have potential in the treatment of several ocular diseases. However, while there are many studies indicating plausible biological mechanisms using animal models and in-vitro retinal cells there is a paucity of human research. The evidence base for the use of resveratrol in the management of ocular diseases needs to be increased before recommendations can be made for the use of resveratrol as an ocular supplement. © 2014 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives Particle delivery to the airways is an attractive prospect for many potential therapeutics, including vaccines. Developing strategies for inhalation of particles provides a targeted, controlled and non-invasive delivery route but, as with all novel therapeutics, in vitro and in vivo testing are needed prior to clinical use. Whilst advanced vaccine testing demands the use of animal models to address safety issues, the production of robust in vitro cellular models would take account of the ethical framework known as the 3Rs (Replacement, Reduction and Refinement of animal use), by permitting initial screening of potential candidates prior to animal use. There is thus a need for relevant, realistic in vitro models of the human airways. Key findings Our laboratory has designed and characterised a multi-cellular model of human airways that takes account of the conditions in the airways and recapitulates many salient features, including the epithelial barrier and mucus secretion. Summary Our human pulmonary models recreate many of the obstacles to successful pulmonary delivery of particles and therefore represent a valid test platform for screening compounds and delivery systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reactions of nitrones with free radicals have been widely studied both in vitro and in vivo. In comparison to classical chain-breaking phenolic antioxidants (such as Vitamin E and butylated hydroxytoluene [BHT]), conventional phenyl-substituted nitrones have much higher oxidation potentials. Azulenyl-substituted nitrones have lower oxidation potentials than conventional nitrones and react efficiently with free radicals in vitro and in vivo. The design and synthesis of novel azulenyl nitrones with yet lower oxidation potentials, prepared from commercially available guaiazulene, has produced several 1,2-trans -bis-azulenyl ethene compounds with enhanced antioxidant activity. A convenient 1H NMR-based assay for assessing the potency of chain-breaking antioxidants has shown these novel nitrones to be more than 300 times more potent in inhibiting the free radical-mediated aerobic peroxidation of cumene than α-phenyl-N-tert-butyl nitrone (PBN) and the experimental stroke drug NXY-059. The low oxidation potential of these novel nitrones and the stability of the corresponding radical cation have been implicated in the explanation of the increased antioxidant potency of these second generation azulenyl nitrones. Based on the results of these in vitro studies, the first of these novel compounds, stilbazulenyl nitrone (STAZN), was investigated in animal models of disease known to involve free radical-mediated pathology. In view of STAZN's marked lipophilicity and anticipated blood brain barrier permeability, neurodegenerative conditions were investigated. All animal experiments were performed at the University of Miami by members of the Ginsberg research group. STAZN was neuroprotective in traumatic brain injury in rats. It also provided exceptional neuroprotection in an animal model of stroke. The concentration of STAZN required for neuroprotection was 300–600 times less than doses of PBN or NXY-059 required for similar effect. Thus, the benefits of greater antioxidant potency sought by lowering the oxidation potential of nitrones appear to have been reaped both in vitro and in vivo. In spite of the challenges and difficulties in understanding free radical-mediated pathology, this work establishes that considerations such as redox potential and lipophilicity can provide a very fruitful rationale for the design of therapeutic azulenyl nitrone antioxidants. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Free radicals have been implicated in various pathological conditions such as, stroke, aging and ischemic heart disease (IHD), as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s disease. The role of antioxidants in protection from the harmful effects of free radicals has long been recognized. Trapping extremely reactive free radicals and eliminating them from circulation has been shown to be effective in animal models. Nitrone-based free radical traps have been extensively explored in biological systems. Examples include nitrones such as PBN, NXY-059, MDL-101,002, DMPO and EMPO. However, these nitrones have extremely high oxidation potentials as compared to natural antioxidants such as Vitamin E (α-tocopherol), and glutathione. Becker et al. (1995) synthesized novel azulenyl nitrones, which were shown to have oxidation potentials much lower than that of any of the previously reported nitrone based spin traps. Another azulenyl nitrone derivative, stilbazulenyl nitrone (STAZN), was shown to have an even lower oxidation potential within the range of natural antioxidants. STAZN, a second generation free radical trap, was found to be markedly superior than the two most studied nitrones, PBN and NXY-059, in animal models of cerebral ischemia and in an in vitro assay of lipid peroxidation. In this study, a third generation azulenyl nitrone was synthesized with an electron donating group on the previously synthesized STAZN derivative with the aim to lower the oxidation potential even more. Pseudoazulenes, because of the presence of an annular heteroatom, have been reported to possess even lower oxidation potential than that of the azulenyl counterpart. Therefore, pseudoazulenyl nitrones were synthesized for the first time by extracting and elaborating valtrate from the roots of Centranthus ruber (Red valerian or Jupiter’s beard). Several pseudoazulenyl nitrones were synthesized by using a facile experimental protocol. The physical and biological properties of these pseudoazulenyl nitrones can be easily modified by simply changing the substituent on the heteroatom. Cyclic voltammetry experiments have shown that these pseudoazulenyl nitrones do indeed have low oxidation potentials. The oxidation potential of these nitrones was lowered even more by preparing derivatives bearing an electron donating group at the 3-position of the five membered ring of the pseudoazulenyl nitrone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parkinson disease (PD) is associated with motor symptoms and dopaminergic cell loss in the nigrostriatal pathway. Alpha-synuclein is the major component of the Lewy bodies, the biological hallmarks of disease, and has been associated with familial cases of PD. Recently, the spinal cord stimulation (SCS) showed to be effective to alleviate the Parkinson symptoms in animal models and human patients. In this project, we characterized the motor and electrophysiological effects of alpha-synuclein overexpression in the substantia nigra of rats. We further investigated the effects of spinal electrical stimulation, AMPT and L-dopa administration in this model. Method: Sprague-Dawley rats were injected with empty viral vector or the vector carrying the gene for alpha-synuclein in the substantia nigra, and were tested weekly for 10 weeks in the open field and cylinder tests. A separated group of animals implanted with bilateral electrode arrays in the motor cortex and the striatum were recorded in the open field, during the SCS sessions and the pharmacological experiments. Results: Alpha-synuclein expression resulted in motor asymmetry, observed as the reduction in use of contralateral forepaw in the cylinder test. Animals showed an increase of local field potential activity in beta band three and four weeks after the virus injection, that was not evident after the 5th week. AMPT resulted in a sever parkinsonian state, with reduction in the locomotor activity and significant peak of oscillatory activity in cortex and striatum. SCS was effective to alleviate the motor asymmetry at long term, but did not reduce the corticostriatal low frequency oscillations observed 24 hs after the AMPT administration. These oscillations were attenuated by L-dopa that, even as SCS, was not effective to restore the locomotor activity during the severe dopaminergic depletion period. Discussion: The alpha-synuclein model reproduces the motor impairment and the progressive neurodegenerative process of PD. We demonstrated, by the first time, that this model also presents the increase in low frequency oscillatory activity in the corticostriatal circuit, compatible with parkinsonian condition; and that SCS has a therapeutic effect on motor symptom of this model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of 6 and 8. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years, however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab and to potentially treat them in the clinic. This review will detail the initial strides toward modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Finally, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Free radicals have been implicated in various pathological conditions such as, stroke, aging and ischemic heart disease (IHD), as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s disease. The role of antioxidants in protection from the harmful effects of free radicals has long been recognized. Trapping extremely reactive free radicals and eliminating them from circulation has been shown to be effective in animal models. Nitrone-based free radical traps have been extensively explored in biological systems. Examples include nitrones such as PBN, NXY-059, MDL-101,002, DMPO and EMPO. However, these nitrones have extremely high oxidation potentials as compared to natural antioxidants such as Vitamin E (á-tocopherol), and glutathione. Becker et al. (1995) synthesized novel azulenyl nitrones, which were shown to have oxidation potentials much lower than that of any of the previously reported nitrone based spin traps. Another azulenyl nitrone derivative, stilbazulenyl nitrone (STAZN), was shown to have an even lower oxidation potential within the range of natural antioxidants. STAZN, a second generation free radical trap, was found to be markedly superior than the two most studied nitrones, PBN and NXY-059, in animal models of cerebral ischemia and in an in vitro assay of lipid peroxidation. In this study, a third generation azulenyl nitrone was synthesized with an electron donating group on the previously synthesized STAZN derivative with the aim to lower the oxidation potential even more. Pseudoazulenes, because of the presence of an annular heteroatom, have been reported to possess even lower oxidation potential than that of the azulenyl counterpart. Therefore, pseudoazulenyl nitrones were synthesized for the first time by extracting and elaborating valtrate from the roots of Centranthus ruber (Red valerian or Jupiter’s beard). Several pseudoazulenyl nitrones were synthesized by using a facile experimental protocol. The physical and biological properties of these pseudoazulenyl nitrones can be easily modified by simply changing the substituent on the heteroatom. Cyclic voltammetry experiments have shown that these pseudoazulenyl nitrones do indeed have low oxidation potentials. The oxidation potential of these nitrones was lowered even more by preparing derivatives bearing an electron donating group at the 3-position of the five membered ring of the pseudoazulenyl nitrone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Left ventricular diastolic dysfunction leads to heart failure with preserved ejection fraction, an increasingly prevalent condition largely driven by modern day lifestyle risk factors. As heart failure with preserved ejection fraction accounts for almost one-half of all patients with heart failure, appropriate nonhuman animal models are required to improve our understanding of the pathophysiology of this syndrome and to provide a platform for preclinical investigation of potential therapies. Hypertension, obesity, and diabetes are major risk factors for diastolic dysfunction and heart failure with preserved ejection fraction. This review focuses on murine models reflecting this disease continuum driven by the aforementioned common risk factors. We describe various models of diastolic dysfunction and highlight models of heart failure with preserved ejection fraction reported in the literature. Strengths and weaknesses of the different models are discussed to provide an aid to translational scientists when selecting an appropriate model. We also bring attention to the fact that heart failure with preserved ejection fraction is difficult to diagnose in animal models and that, therefore, there is a paucity of well described animal models of this increasingly important condition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Área de especialização: Intervenção Cardiovascular.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il existe un besoin clinique pour les prothèses vasculaires de faible diamètre (< 6 mm), notamment pour effectuer des pontages vasculaires. Les prothèses synthétiques de faible diamètre, n’ayant pas d’endothélium, sont sujettes à la thrombose. Ainsi les chirurgiens préfèrent utiliser les vaisseaux autologues des patients. Pour cela, la veine saphène est de loin la plus utilisée. Cependant, de nombreux patients n’ont pas de vaisseaux adéquats, soit parce qu’ils ont déjà été utilisés, soit parce qu’ils sont malades. Pour pallier ce manque, le LOEX a développé un substitut vasculaire reconstruit en laboratoire par la méthode d’auto-assemblage du génie tissulaire. Ces substituts, faits à partir de cellules humaines, ont une longue période de production et ne peuvent être faits à l’avance ni préservés. L’objectif principal de cette thèse est le développement d’une prothèse vasculaire de faible diamètre facilitant le transfert du laboratoire vers la clinique. S’inspirant de travaux antérieurs, les travaux focalisent sur des prothèses obtenues à partir de fibroblastes dermiques humains puis décellularisés. Comme la réponse immunitaire se fait principalement contre les cellules et non pas contre la matrice extracellulaire, la décellularisation permet de gagner une compatibilité immunitaire inter-individu, voire inter-espèce. Ainsi, des prothèses ont été implantées dans six rats pendant six mois sans immunosuppression avec un taux de succès de 83%. Les explants présentaient une infiltration cellulaire suggérant la formation d’une nouvelle media recouverte d’un endothélium. Par ailleurs, nous avons démontré qu’il était également possible de produire des prothèses de grandeur et diamètre adéquats pour une utilisation clinique. Ces prothèses ont été préservées durant trois mois sans altérer leurs propriétés mécaniques. Nous avons également endothélialisé des vaisseaux qui ont ensuite été conditionnés en bioréacteur durant une semaine. Le processus entraînait une compaction de la matrice extracellulaire et un gain dans la résistance à la traction du matériau. En conclusion, les prothèses vasculaires décellularisées offrent deux avantages majeurs facilitant ainsi les essais précliniques et accélérant leur transfert du laboratoire vers les patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adult intestinal microbiota comprises a microbial ecosystem of approximately 100 trillion microorganisms, with specific bacterial communities holding distinct metabolic capabilities. Bacteria produce a range of bioactive compounds to survive unfavourable stimuli and to interact with other organisms, and generate several bioactive products during degradation of dietary constituents the host is not capable of digesting. This thesis addressed the impact of feeding potential probiotic bacteria and other dietary strategies such as pure fatty acids and prebiotics, on gut microbiota composition, short chain fatty acid (SCFA) production and modulation of metabolism in animal models. In the first experimental chapter (Chapter 2) a gas chromatography method for the quantification of SCFA was optimized and applied in the analysis of caecal samples obtained in animal studies described in other chapters of this thesis. In Chapter 3, t10, c12 CLA supplementation was shown to significantly alter murine gut microbiota composition and SCFA production rather than no supplementation. These changes were suggested to be extra factors affecting host lipid metabolism. Chapter 4 described the contrasting effects of CLA-producing strains, Bifidobacterium breve DPC 6330 and B. breve NCIMB 702258, on murine fat distribution/composition and gut microbiota composition, suggesting that these changes were most likely strain-dependent. In Chapter 5, dietary GABA-producing strain Lactobacillus brevis DPC 6108 was shown to significantly increase (p<0.05) serum insulin in healthy rats, leading to a second experiment using a type 1 diabetes rat model. Lb. brevis DPC 6108 administration did not change insulin levels in diabetic rats, but attenuated high levels of glucose when compared to diabetic control. However, an auto-immune-induced diabetes model was suggested as a better model to study GABA-related effects on diabetes. In Chapter 6 bovine milk oligosaccharides, 6’sialyllactose and Beneo Orafti P95 oligofructose supplementations were associated with depletion or reduction of less favourable bacteria, demonstrating that ingestion of these oligosaccharides might be a safe and effective approach to modulate populations of the intestinal microbiota. In Chapter 7 (General discussion) the major findings of all studies were reviewed and discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tyrpsine kinase inhibitors (TKIs) effectively target progenitors and mature leukaemic cells but prove less effective at eliminating leukaemic stem cells (LSCs) in patients with chronic myeloid leukaemia (CML). Several reports indicate that the TGFβ superfamily pathway is important for LSC survival and quiescence. We conducted extensive microarray analyses to compare expression patterns in normal haemopoietic stem cells (HSC) and progenitors with CML LSC and progenitor populations in chronic phase (CP), accelerated phase (AP) and blast crisis (BC) CML. The BMP/SMAD pathway and downstream signalling molecules were identified as significantly deregulated in all three phases of CML. The changes observed could potentiate altered autocrine signalling, as BMP2, BMP4 (p<0.05), and ACTIVIN A (p<0.001) were all down regulated, whereas BMP7, BMP10 and TGFβ (p<0.05) were up regulated in CP. This was accompanied by up regulation of BMPRI (p<0.05) and downstream SMADs (p<0.005). Interestingly, as CML progressed, the profile altered, with BC patients showing significant over-expression of ACTIVIN A and its receptor ACVR1C. To further characterise the BMP pathway and identify potential candidate biomarkers within a larger cohort, expression analysis of 42 genes in 60 newly diagnosed CP CML patient samples, enrolled on a phase III clinical trial (www.spirit-cml.org) with greater than 12 months follow-up data on their response to TKI was performed. Analysis revealed that the pathway was highly deregulated, with no clear distinction when patients were stratified into good, intermediate and poor response to treatment. One of the major issues in developing new treatments to target LSCs is the ability to test small molecule inhibitors effectively as it is difficult to obtain sufficient LSCs from primary patient material. Using reprogramming technologies, we generated induced pluripotent stem cells (iPSCs) from CP CML patients and normal donors. CML- and normal-derived iPSCs were differentiated along the mesodermal axis to generate haemopoietic and endothelial precursors (haemangioblasts). IPSC-derived haemangioblasts exhibited sensitivity to TKI treatment with increased apoptosis and reduction in the phosphorylation of downstream target proteins. 4 Dual inhibition studies were performed using BMP pathway inhibitors in combination with TKI on CML cell lines, primary cells and patient derived iPSCs. Results indicate that they act synergistically to target CML cells both in the presence and absence of BMP4 ligand. Inhibition resulted in decreased proliferation, irreversible cell cycle arrest, increased apoptosis, reduced haemopoietic colony formation, altered gene expression pattern, reduction in self-renewal and a significant reduction in the phosphorylation of downstream target proteins. These changes offer a therapeutic window in CML, with intervention using BMP inhibitors in combination with TKI having the potential to prevent LSC self-renewal and improve outcome for patients. By successfully developing and validating iPSCs for CML drug screening we hope to substantially reduce the reliance on animal models for early preclinical drug screening in leukaemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hippocampal sclerosis (HS) is considered the most frequent neuropathological finding in patients with mesial temporal lobe epilepsy (MTLE). Hippocampal specimens of pharmacoresistant MTLE patients that underwent epilepsy surgery for seizure control reveal the characteristic pattern of segmental neuronal cell loss and concomitant astrogliosis. However, classification issues of hippocampal lesion patterns have been a matter of intense debate. International consensus classification has only recently provided significant progress for comparisons of neurosurgical and clinic-pathological series between different centers. The respective four-tiered classification system of the International League Against Epilepsy subdivides HS into three types and includes a term of gliosis only, no-HS. Future studies will be necessary to investigate whether each of these subtypes of HS may be related to different etiological factors or with postoperative memory and seizure outcome. Molecular studies have provided potential deeper insights into the pathogenesis of HS and MTLE on the basis of epilepsy-surgical hippocampal specimens and corresponding animal models. These include channelopathies, activation of NMDA receptors, and other conditions related to Ca(2+) influx into neurons, the imbalance of Ca(2+)-binding proteins, acquired channelopathies that increase neuronal excitability, paraneoplastic and non-paraneoplastic inflammatory events, and epigenetic regulation promoting or facilitating hippocampal epileptogenesis. Genetic predisposition for HS is clearly suggested by the high incidence of family history in patients with HS, and by familial MTLE with HS. So far, it is clear that HS is multifactorial and there is no individual pathogenic factor either necessary or sufficient to generate this intriguing histopathological condition. The obvious variety of pathogenetic combinations underlying HS may explain the multitude of clinical presentations, different responses to clinical and surgical treatment. We believe that the stratification of neuropathological patterns can help to characterize specific clinic-pathological entities and predict the postsurgical seizure control in an improved fashion.