944 resultados para Ex situ conservation
Resumo:
Reducing duplication in ex-situ collections is complicated and requires good quality genetic markers. This study was conducted to assess the value of endosperm proteins and SSRs for validation of potential duplicates and monitoring intra-accession variability. Fifty durum wheat (Triticum turgidum ssp. durum) accessions grouped in 23 potential duplicates, and previously characterised for 30 agro-morphological traits, were analysed for gliadin and high molecular weight glutenin (HMWG) subunit alleles, total protein, and 24 SSRs, covering a wide genome area. Similarity and dissimilarity matrices were generated based on protein and SSRs alleles. For heterogeneous accessions at gliadins the percent pattern homology (PH) between gliadin patterns and the Nei’s coefficient of genetic identity (I) were computed. Eighteen duplicates identical for proteins showed none or less than 3 unshared SSRs alleles. For heterogeneous accessions PH and I values lower than 80 identified clearly off-types with more than 3 SSRs unshared. Only those biotypes differing in no more than one protein-coding locus were confirmed with SSRs. A good concordance among proteins, morphological traits, and SSR were detected. However, the discrepancy in similarity detected in some cases showed that it is advisable to evaluate redundancy through distinct approaches. The analysis in proteins together with SSRs data are very useful to identify duplicates, biotypes, close related genotypes, and contaminations
Resumo:
We report on the fabrication details of TES based on Mo/Au bilayers. The Mo layer is deposited by radio frequency (RF) sputtering and capped with a sputter deposited thin Au protection layer. Afterwards, a second Au layer of suitable (lower) resistivity is deposited ex‐situ by e‐beam evaporation, until completion of the total desired Au thickness. The deposition was performed at room temperature (RT) on LPCVD Si3 N4 membranes. Such a deposition procedure is very reproducible and allow controlling the critical temperature (Tc) and normal electrical resistance (RN ) of the Mo/Au bilayer. The process is optimized to achieve low stress bilayers, thus avoiding the undesirable curvature of the membranes. Bilayers are patterned using photolithographic techniques and wet etching procedures. Mo superconducting paths are used to contact the Mo/Au bilayers, thus ensuring good electrical conductivity and thermal isolation. The entire fabrication process let to stable and reproducible sensors with required and tunable functional properties
Resumo:
SiGe nanowires of different Ge atomic fractions up to 15% were grown and ex-situ n-type doped by diffusion from a solid source in contact with the sample. The phenomenon of dielectrophoresis was used to locate single nanowires between pairs of electrodes in order to carry out electrical measurements. The measured resistance of the as-grown nanowires is very high, but it decreases more than three orders of magnitude upon doping, indicating that the doping procedure used has been effective
Resumo:
The first dark characterization of a thermometer fabricated with our Mo/Au bilayers to be used as a transition edge sensor is presented. High-quality, stress-free Mo layers, whose thickness is used to tune the critical temperature (TC ) down to 100 mK, are deposited by sputtering at room temperature (RT ) on Si3N4 bulk and membranes, and protected from degradation with a 15-nm sputtered Au layer. An extra layer of high-quality Au is deposited by ex situ e-beam to ensure low residual resistance. The thermometer is patterned on a membrane using standard photolithographic techniques and wet etching processes, and is contacted through Mo paths, displaying a sharp superconducting transition (α ≈ 600). Results show a good coupling between Mo and Au layers and excellent TC reproducibility, allowing to accurately correlate dM o and TC . Since dAu is bigger than ξM for all analyzed samples, bilayer residual resistance can be modified without affecting TC . Finally, first current to voltage measurements at different temperatures are measured and analyzed, obtaining the corresponding characterization parameters.